Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites

Abstract

Inhibitory neurotransmission mediated by GABAA receptors can be modulated by the endogenous neurosteroids, allopregnanolone and tetrahydro-deoxycorticosterone1. Neurosteroids are synthesized de novo in the brain during stress2, pregnancy3and after ethanol consumption4, and disrupted steroid regulation of GABAergic transmission is strongly implicated in several debilitating conditions such as panic disorder, major depression, schizophrenia, alcohol dependence and catamenial epilepsy3,5,6,7,8. Determining how neurosteroids interact with the GABAA receptor is a prerequisite for understanding their physiological and pathophysiological roles in the brain. Here we identify two discrete binding sites in the receptor’s transmembrane domains that mediate the potentiating and direct activation effects of neurosteroids. They potentiate GABA responses from a cavity formed by the α-subunit transmembrane domains, whereas direct receptor activation is initiated by interfacial residues between α and β subunits and is enhanced by steroid binding to the potentiation site. Thus, significant receptor activation by neurosteroids relies on occupancy of both the activation and potentiation sites. These sites are highly conserved throughout the GABAA receptor family, and their identification provides a unique opportunity for the development of new therapeutic, neurosteroid-based ligands and transgenic disease models of neurosteroid dysfunction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurosteroid activity is determined by α-subunit M1 domain residues.
Figure 2: Neurosteroid potentiation requires α-subunit M1 and M4 residues.
Figure 3: Neurosteroid activation binding site spans the β/α-subunit interface.
Figure 4: Steric and dipolar disruption to the neurosteroid-binding sites.

Similar content being viewed by others

References

  1. Belelli, D. & Lambert, J. J. Neurosteroids: endogenous regulators of the GABAA receptor. Nature Rev. Neurosci. 6, 565–575 (2005)

    Article  CAS  Google Scholar 

  2. Reddy, D. S. Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions?. Trends Pharmacol. Sci. 24, 103–106 (2003)

    Article  CAS  Google Scholar 

  3. Stoffel-Wagner, B. Neurosteroid biosynthesis in the human brain and its clinical implications. Ann. NY Acad. Sci. 1007, 64–78 (2003)

    Article  ADS  CAS  Google Scholar 

  4. Kumar, S., Fleming, R. L. & Morrow, A. L. Ethanol regulation of gamma-aminobutyric acid A receptors: genomic and nongenomic mechanisms. Pharmacol. Ther. 101, 211–226 (2004)

    Article  CAS  Google Scholar 

  5. Backstrom, T. et al. Pathogenesis in menstrual cycle-linked CNS disorders. Ann. NY Acad. Sci. 1007, 42–53 (2003)

    Article  ADS  Google Scholar 

  6. Finn, D. A., Ford, M. M., Wiren, K. M., Roselli, C. E. & Crabbe, J. C. The role of pregnane neurosteroids in ethanol withdrawal: behavioral genetic approaches. Pharmacol. Ther. 101, 91–112 (2004)

    Article  CAS  Google Scholar 

  7. Eser, D. et al. Neuroactive steroids as modulators of depression and anxiety. Neuroscience 138, 1041–1048 (2006)

    Article  CAS  Google Scholar 

  8. Marx, C. E. et al. Neuroactive steroids are altered in schizophrenia and bipolar disorder: relevance to pathophysiology and therapeutics. Neuropsychopharmacology 31, 1249–1263 (2006)

    Article  CAS  Google Scholar 

  9. Fritschy, J. M. & Brunig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 98, 299–323 (2003)

    Article  CAS  Google Scholar 

  10. Purdy, R. H., Morrow, A. L., Moore, P. H. & Paul, S. M. Stress-induced elevations of γ-aminobutyric acid type A receptor-active steroids in the rat brain. Proc. Natl Acad. Sci. USA 88, 4553–4557 (1991)

    Article  ADS  CAS  Google Scholar 

  11. Barbaccia, M. L. et al. The effects of inhibitors of GABAergic transmission and stress on brain and plasma allopregnanolone concentrations. Br. J. Pharmacol. 120, 1582–1588 (1997)

    Article  CAS  Google Scholar 

  12. Zhu, W. J. & Vicini, S. Neurosteroid prolongs GABAA channel deactivation by altering kinetics of desensitized states. J. Neurosci. 17, 4022–4031 (1997)

    Article  CAS  Google Scholar 

  13. Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M. & Mody, I. Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by δ subunit-containing GABAA receptors. Proc. Natl Acad. Sci. USA 100, 14439–14444 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Belelli, D. & Herd, M. B. The contraceptive agent Provera enhances GABAA receptor-mediated inhibitory neurotransmission in the rat hippocampus: evidence for endogenous neurosteroids? J. Neurosci. 23, 10013–10020 (2003)

    Article  CAS  Google Scholar 

  15. Majewska, M. D., Harrison, N. L., Schwartz, R. D., Barker, J. L. & Paul, S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232, 1004–1007 (1986)

    Article  ADS  CAS  Google Scholar 

  16. Rick, C. E., Ye, Q., Finn, S. E. & Harrison, N. L. Neurosteroids act on the GABAA receptor at sites on the N-terminal side of the middle of TM2. Neuroreport 9, 379–383 (1998)

    Article  CAS  Google Scholar 

  17. Akk, G. et al. Neurosteroid access to the GABAA receptor. J. Neurosci. 25, 11605–11613 (2005)

    Article  CAS  Google Scholar 

  18. Ueno, S., Tsutsui, M., Toyohira, Y., Minami, K. & Yanagihara, N. Sites of positive allosteric modulation by neurosteroids on ionotropic gamma-aminobutyric acid receptor subunits. FEBS Lett. 566, 213–217 (2004)

    Article  CAS  Google Scholar 

  19. Chen, R. et al. Cloning and functional expression of a Drosophila γ-aminobutyric acid receptor. Proc. Natl Acad. Sci. USA 91, 6069–6073 (1994)

    Article  ADS  CAS  Google Scholar 

  20. Harrison, N. L., Majewska, M. D., Harrington, J. W. & Barker, J. L. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acid-A receptor complex. J. Pharmacol. Exp. Ther. 241, 346–353 (1987)

    CAS  PubMed  Google Scholar 

  21. Grishkovskaya, I. et al. Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain. EMBO J. 19, 504–512 (2000)

    Article  CAS  Google Scholar 

  22. Brzozowski, A. M. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997)

    Article  ADS  CAS  Google Scholar 

  23. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003)

    Article  ADS  CAS  Google Scholar 

  24. Williams, D. B. & Akabas, M. H. γ-Aminobutyric acid increases the water accessibility of M3 membrane-spanning segment residues in γ-aminobutyric acid type A receptors. Biophys. J. 77, 2563–2574 (1999)

    Article  ADS  CAS  Google Scholar 

  25. Lobo, I. A., Mascia, M. P., Trudell, J. R. & Harris, R. A. Channel gating of the glycine receptor changes accessibility to residues implicated in receptor potentiation by alcohols and anesthetics. J. Biol. Chem. 279, 33919–33927 (2004)

    Article  CAS  Google Scholar 

  26. Jung, S., Akabas, M. H. & Harris, R. A. Functional and structural analysis of the GABAA receptor α1 subunit during channel gating and alcohol modulation. J. Biol. Chem. 280, 308–316 (2005)

    Article  CAS  Google Scholar 

  27. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003)

    Article  CAS  Google Scholar 

  28. Trudell, J. R. & Bertaccini, E. Comparative modeling of a GABAA α1 receptor using three crystal structures as templates. J. Mol. Graph. Model. 23, 39–49 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Duguid, P. Miller and P. Thomas for comments on the manuscript. This work was supported by the Medical Research Council and The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alastair M. Hosie or Trevor G. Smart.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–4, Supplementary Tables, and Supplementary Methods. (PDF 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosie, A., Wilkins, M., da Silva, H. et al. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 444, 486–489 (2006). https://doi.org/10.1038/nature05324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05324

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing