Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Depression, anxiety and telomere length in young adults: evidence from the National Health and Nutrition Examination Survey

Abstract

Telomere length has been hypothesized to be a marker of cumulative exposure to stress, and stress is an established cause of depression and anxiety disorders. The aim of this study was to examine the relationship between depression, anxiety and telomere length, and to assess whether this relationship is moderated by race/ethnicity, gender and/or antidepressant use. Data were from the 1999-2002 National Health and Nutrition Examination Survey. Telomere length was assessed using the quantitative PCR method of telomere length relative to standard reference DNA. Past-year major depression (MD), generalized anxiety disorder (GAD) and panic disorder (PD), as well as depressed affect and anxious affect, were assessed using the Composite International Diagnostic Inventory (N=1290). Multiple linear regression was used to assess the relationship between depression and anxiety disorders and telomere length. Among women, those with GAD or PD had shorter telomeres than those with no anxious affect (β: −0.07, P<0.01), but there was no relationship among men (β: 0.08, P>0.05). Among respondents currently taking an antidepressant, those with MD had shorter telomeres than those without (β: −0.26, P<0.05), but there was no association between MD and telomere length among those not using antidepressants (β: −0.00, P>0.05). Neither depressive nor anxiety disorders were directly associated with telomere length in young adults. There was suggestive evidence that pharmacologically treated MD is associated with shorter telomere length, likely reflecting the more severe nature of MD that has come to clinical attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wulsin LR, Singal BM . Do depressive symptoms increase the risk for the onset of coronary disease? A systematic quantitative review. Psychosom Med 2003; 65: 201–210.

    Article  PubMed  Google Scholar 

  2. Mezuk B, Eaton WW, Albrecht S, Golden SH . Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 2008; 31: 2383–2390.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mezuk B, Eaton WW, Golden SH . Depression and osteoporosis: epidemiology and potential mediating pathways. Osteoporos Int 2008; 19: 1–12.

    Article  CAS  PubMed  Google Scholar 

  4. Chodosh J, Kado DM, Seeman TE, Karlamangla AS . Depressive symptoms as a predictor of cognitive decline: MacArthur Studies of Successful Aging. Am J Geriatr Psychiatry 2007; 15: 406–415.

    Article  PubMed  Google Scholar 

  5. Hofmann M, Kohler B, Leichsenring F, Kruse J . Depression as a risk factor for mortality in individuals with diabetes: a meta-analysis of prospective studies. PLoS One 2013; 8: e79809.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Phillips AC, Batty GD, Gale CR, Deary IJ, Osborn D, MacIntyre K, et al. Generalized anxiety disorder, major depressive disorder, and their comorbidity as predictors of all-cause and cardiovascular mortality: the Vietnam experience study. Psychosom Med 2009; 71: 395–403.

    Article  CAS  PubMed  Google Scholar 

  7. Stetler C, Miller GE . Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med. 2011; 73: 114–126.

    Article  PubMed  Google Scholar 

  8. Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW . Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 2013; 18: 692–699.

    Article  CAS  PubMed  Google Scholar 

  9. Licht CM, de Geus EJ, Zitman FG, Hoogendijk WJ, van Dyck R, Penninx BW . Association between major depressive disorder and heart rate variability in the Netherlands Study of Depression and Anxiety (NESDA). Arch Gen Psychiatry 2008; 65: 1358–1367.

    Article  PubMed  Google Scholar 

  10. Freeman EW, Sammel MD, Lin H, Nelson DB . Associations of hormones and menopausal status with depressed mood in women with no history of depression. Arch Gen Psychiatry 2006; 63: 375–382.

    Article  CAS  PubMed  Google Scholar 

  11. Amore M, Scarlatti F, Quarta AL, Tagariello P . Partial androgen deficiency, depression and testosterone treatment in aging men. Aging Clin Exp Res 2009; 21: 1–8.

    Article  CAS  PubMed  Google Scholar 

  12. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010; 67: 446–457.

    Article  CAS  PubMed  Google Scholar 

  13. Franceschi C . Inflammaging as a major characteristic of old people: can it be prevented or cured?. Nutr Rev 2007; 65 (Part 2) S173–S176.

    Article  PubMed  Google Scholar 

  14. McEwen BS . Mood disorders and allostatic load. Biol Psychiatry 2003; 54: 200–207.

    Article  PubMed  Google Scholar 

  15. Glei DA, Goldman N, Chuang YL, Weinstein M . Do chronic stressors lead to physiological dysregulation? Testing the theory of allostatic load. Psychosom Med 2007; 69: 769–776.

    Article  PubMed  Google Scholar 

  16. Ellis BJ, Del Giudice M . Beyond allostatic load: rethinking the role of stress in regulating human development. Dev Psychopathol 2013; 26: 1–20.

    Article  PubMed  Google Scholar 

  17. Wolkowitz OM, Epel ES, Reus VI, Mellon SH . Depression gets old fast: do stress and depression accelerate cell aging? Depress Anxiety 2010; 27: 327–338.

    Article  CAS  PubMed  Google Scholar 

  18. Blackburn E . Telomere states and cell fates. Nature 2000; 408: 53–56.

    Article  CAS  PubMed  Google Scholar 

  19. Blasco M . Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005; 6: 611–622.

    Article  CAS  PubMed  Google Scholar 

  20. Samani N, Boultby R, Butler R, Thompson J, Goodall A . Telomere shortening in atherosclerosis. Lancet 2001; 358: 472–473.

    Article  CAS  PubMed  Google Scholar 

  21. Brouilette S, Moore J, McMahon A, Thompson J, Ford I, Shepherd J, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case–control study. Lancet 2007; 369: 107–114.

    Article  CAS  PubMed  Google Scholar 

  22. Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 2007; 165: 14–21.

    Article  PubMed  Google Scholar 

  23. Willeit P, Willeit J, Brandstatter A, Ehrlenbach S, Mayr A, Gasperi A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol 2010; 30: 1649–1656.

    Article  CAS  PubMed  Google Scholar 

  24. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 2013; 45: 422–427, 7e1-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zee RY, Castonguay AJ, Barton NS, Germer S, Martin M . Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case–control study. Transl Res 2010; 155: 166–169.

    Article  CAS  PubMed  Google Scholar 

  26. Salpea KD, Talmud PJ, Cooper JA, Maubaret CG, Stephens JW, Abelak K, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis 2010; 209: 42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao J, Zhu Y, Lin J, Matsuguchi T, Blackburn E, Zhang Y, et al. Short leukocyte telomere length predicts risk of diabetes in american indians: the strong heart family study. Diabetes 2014; 63: 354–362.

    Article  CAS  PubMed  Google Scholar 

  28. von Zglinicki T, Serra V, Lorenz M, Saretzki G, Lenzen-Grossimlighaus R, Gessner R, et al. Short telomeres in patients with vascular dementia: an indicator of low antioxidative capacity and a possible risk factor? Lab Invest 2000; 80: 1739–1747.

    Article  CAS  PubMed  Google Scholar 

  29. Panossian LA, Porter VR, Valenzuela HF, Zhu X, Reback E, Masterman D, et al. Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol Aging 2003; 24: 77–84.

    Article  CAS  PubMed  Google Scholar 

  30. Yaffe K, Lindquist K, Kluse M, Cawthon R, Harris T, Hsueh WC, et al. Telomere length and cognitive function in community-dwelling elders: findings from the Health ABC Study. Neurobiol Aging 2011; 32: 2055–2060.

    Article  CAS  PubMed  Google Scholar 

  31. Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R . Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol. 2012; 69: 1332–1339.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Willeit P, Willeit J, Mayr A, Weger S, Oberhollenzer F, Brandstatter A, et al. Telomere length and risk of incident cancer and cancer mortality. JAMA 2010; 304: 69–75.

    Article  CAS  PubMed  Google Scholar 

  33. Wentzensen IM, Mirabello L, Pfeiffer RM, Savage SA . The association of telomere length and cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2011; 20: 1238–1250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Astrup AS, Tarnow L, Jorsal A, Lajer M, Nzietchueng R, Benetos A, et al. Telomere length predicts all-cause mortality in patients with type 1 diabetes. Diabetologia 2010; 53: 45–48.

    Article  CAS  PubMed  Google Scholar 

  35. Cawthon RM, Smith K, O'Brien E, Sivatchenko A, Kerber R . Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 2003; 361: 393–395.

    Article  CAS  PubMed  Google Scholar 

  36. Epel E, Merkin SS, Cawthon R, Blackburn EH, Adler NE, Pletcher MJ, et al. The rate of telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging 2009; 1: 81–88.

    Article  CAS  Google Scholar 

  37. Fitzpatrick AL, Kronmal RA, Kimura M, Gardner JP, Psaty BM, Jenny NS, et al. Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 2011; 66: 421–429.

    Article  PubMed  Google Scholar 

  38. Honig LS, Kang MS, Schupf N, Lee JH, Mayeux R . Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol 2012; 69: 1–8.

    Google Scholar 

  39. Kimura M, Hjelmborg J, Gardner J, Bathum L, Brimacombe M, Lu X, et al. Short leukocyte telomeres forecast mortality: a study in elderly Danish twins. Am J Epidemiol 2008; 167: 799–806.

    Article  PubMed  Google Scholar 

  40. Lee J, Sandford AJ, Connett JE, Yan J, Mui T, Li Y, et al. The relationship between telomere length and mortality in chronic obstructive pulmonary disease (COPD). PLoS One 2012; 7: e35567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin-Ruiz C, Dickinson HO, Keys B, Rowan E, Kenny RA, Von Zglinicki T . Telomere length predicts poststroke mortality, dementia, and cognitive decline. Ann Neurol. 2006; 60: 174–180.

    Article  PubMed  Google Scholar 

  42. Weischer M, Bojesen SE, Cawthon RM, Freiberg JJ, Tybjaerg-Hansen A, Nordestgaard BG . Short telomere length, myocardial infarction, ischemic heart disease, and early death. Arterioscler Thromb Vasc Biol 2012; 32: 822–829.

    Article  CAS  PubMed  Google Scholar 

  43. Bakaysa S, Mucci L, Slagbloom P, Boomsma D, McClearn G, Johansson B, et al. Telomere length predicts survival independent of genetic influences. Aging Cell 2007; 6: 769–774.

    Article  CAS  PubMed  Google Scholar 

  44. Farzaneh-Far R, Cawthon RM, Na B, Browner WS, Schiller NB, Whooley MA . Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler Thromb Vasc Biol 2008; 28: 1379–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deelen J, Beekman M, Codd V, Trompet S, Broer L, Hagg S, et al. Leukocyte telomere length associates with prospective mortality independent of immune-related parameters and known genetic markers. Int J Epidemiol 2014; 43: 878–886.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Verhoeven JE, Revesz D, Epel ES, Lin J, Wolkowitz OM, Penninx BW . Major depressive disorder and accelerated cellular aging: results from a large psychiatric cohort study. Mol Psychiatry 2014; 19: 895–901.

    Article  CAS  PubMed  Google Scholar 

  47. Phillips AC, Robertson T, Carroll D, Der G, Shiels PG, McGlynn L, et al. Do symptoms of depression predict telomere length? Evidence from the West of Scotland Twenty-07 study. Psychosom Med 2013; 75: 288–296.

    Article  PubMed  Google Scholar 

  48. Hoen PW, Rosmalen JG, Schoevers RA, Huzen J, van der Harst P, de Jonge P . Association between anxiety but not depressive disorders and leukocyte telomere length after 2 years of follow-up in a population-based sample. Psychol Med 2013; 43: 689–697.

    Article  CAS  PubMed  Google Scholar 

  49. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003; 289: 3095–3105.

    PubMed  Google Scholar 

  50. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, et al. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods 2010; 352: 71–80.

    Article  CAS  PubMed  Google Scholar 

  51. Cawthon RM . Telomere measurement by quantitative PCR. Nucleic Acids Res 2002; 30: e47.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kessler RC, Andrews G, Mroczek D, Ustun B, Wittchen H-U . The World Health Organization Composite International Diagnostic Interview short-form (CIDI-SF). Int J Methods Psychiatr Res 1998; 7: 171–185.

    Article  Google Scholar 

  53. Wittchen HU . Reliability and validity studies of the WHO—Composite International Diagnostic Interview (CIDI): a critical review. J Psychiatr Res 1994; 28: 57–84.

    Article  CAS  PubMed  Google Scholar 

  54. Lexicon Plus: All you need in one easy-to-read database: Cerner Multum; 2013. Available from: http://www.multum.com/lexicon.html (last accessed 18 February 2014).

  55. Wang PS, Lane M, Olfson M, Pincus HA, Wells KB, Kessler RC . Twelve-month use of mental health services in the United States: results from the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005; 62: 629–640.

    Article  PubMed  Google Scholar 

  56. Paternoster R, Brame R, Mazerolle P, Piquero A . Using the correct statistical test for the quality of regression coefficients. Criminology 1998; 36: 859–866.

    Article  Google Scholar 

  57. National Center for Health Statistics. Analytic and Reporting Guidelines: The National Health and Nutrition Examination Survey (NHANES). National Center for Health Statistics, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2006.

  58. Zhang D, Cheng L, Craig DW, Redman M, Liu C . Cerebellar telomere length and psychiatric disorders. Behav Genet 2010; 40: 250–254.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, et al. Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 2006; 60: 432–435.

    Article  CAS  PubMed  Google Scholar 

  60. Hartmann N, Boehner M, Groenen F, Kalb R . Telomere length of patients with major depression is shortened but independent from therapy and severity of the disease. Depress Anxiety 2010; 27: 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  61. Wikgren M, Maripuu M, Karlsson T, Nordfjall K, Bergdahl J, Hultdin J, et al. Short telomeres in depression and the general population are associated with a hypocortisolemic state. Biol Psychiatry 2012; 71: 294–300.

    Article  CAS  PubMed  Google Scholar 

  62. Elvsashagen T, Vera E, Boen E, Bratlie J, Andreassen OA, Josefsen D, et al. The load of short telomeres is increased and associated with lifetime number of depressive episodes in bipolar II disorder. J Affect Disord 2011; 135: 43–50.

    Article  PubMed  Google Scholar 

  63. Hoen PW, de Jonge P, Na BY, Farzaneh-Far R, Epel E, Lin J, et al. Depression and leukocyte telomere length in patients with coronary heart disease: data from the Heart and Soul Study. Psychosom Med 2011; 73: 541–547.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Puterman E, Epel ES, Lin J, Blackburn EH, Gross JJ, Whooley MA, et al. Multisystem resiliency moderates the major depression-telomere length association: findings from the Heart and Soul Study. Brain Behav Immun 2013; 33: 65–73.

    Article  PubMed  Google Scholar 

  65. Teyssier JR, Chauvet-Gelinier JC, Ragot S, Bonin B . Up-regulation of leucocytes genes implicated in telomere dysfunction and cellular senescence correlates with depression and anxiety severity scores. PLoS One 2012; 7: e49677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Garcia-Rizo C, Fernandez-Egea E, Miller BJ, Oliveira C, Justicia A, Griffith JK, et al. Abnormal glucose tolerance, white blood cell count, and telomere length in newly diagnosed, antidepressant-naive patients with depression. Brain Behav Immun 2013; 28: 49–53.

    Article  CAS  PubMed  Google Scholar 

  67. Shalev I, Moffitt TE, Braithwaite AW, Danese A, Fleming NI, Goldman-Mellor S, et al. Internalizing disorders and leukocyte telomere erosion: a prospective study of depression, generalized anxiety disorder and post-traumatic stress disorder. Mol Psychiatry advance online publication, 14 January 2014; doi:10.1038/mp.2013.183 (e-pub ahead of print).

  68. Breslau J, Aguilar-Gaxiola S, Kendler KS, Su M, Williams D, Kessler RC . Specifying race–ethnic differences in risk for psychiatric disorder in a USA national sample. Psychol Med 2006; 36: 57–68.

    Article  PubMed  Google Scholar 

  69. Needham BL, Adler N, Gregorich S, Rehkopf D, Lin J, Blackburn EH, et al. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc Sci Med 2013; 85: 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Diez Roux AV, Ranjit N, Jenny NS, Shea S, Cushman M, Fitzpatrick A, et al. Race/ethnicity and telomere length in the Multi-Ethnic Study of Atherosclerosis. Aging Cell 2009; 8: 251–257.

    Article  CAS  PubMed  Google Scholar 

  71. Geronimus AT, Hicken MT, Pearson JA, Seashols SJ, Brown KL, Cruz TD . Do US black women experience stress-related accelerated biological aging?: A novel theory and first population-based test of black-white differences in telomere length. Hum Nat 2010; 21: 19–38.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Aviv A, Chen W, Gardner JP, Kimura M, Brimacombe M, Cao X, et al. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol 2009; 169: 323–329.

    Article  PubMed  Google Scholar 

  73. Hunt SC, Chen W, Gardner JP, Kimura M, Srinivasan SR, Eckfeldt JH, et al. Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell 2008; 7: 451–458.

    Article  CAS  PubMed  Google Scholar 

  74. Berkson J . Limitations of the application of fourfold table analysis to hospital data. Biometrics 1946; 2: 47–53.

    Article  CAS  PubMed  Google Scholar 

  75. Eaton WW, Hall AL, Macdonald R, McKibben J . Case identification in psychiatric epidemiology: a review. Int Rev Psychiatry 2007; 19: 497–507.

    Article  PubMed  Google Scholar 

  76. Friedrich U, Griese E, Schwab M, Fritz P, Thon K, Klotz U . Telomere length in different tissues of elderly patients. Mech Ageing Dev 2000; 119: 89–99.

    Article  CAS  PubMed  Google Scholar 

  77. Daniali L, Benetos A, Susser E, Kark JD, Labat C, Kimura M, et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 2013; 4: 1597.

    Article  PubMed  Google Scholar 

  78. Lukens JN, Van Deerlin V, Clark CM, Xie SX, Johnson FB . Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer's disease. Alzheimers Dement 2009; 5: 463–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Reus VI, Rosser R, et al. Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response. Mol Psychiatry 2012; 17: 164–172.

    Article  CAS  PubMed  Google Scholar 

  80. Zalli A, Carvalho LA, Lin J, Hamer M, Erusalimsky JD, Blackburn EH, et al. Shorter telomeres with high telomerase activity are associated with raised allostatic load and impoverished psychosocial resources. Proc Natl Acad Sci USA 2014; 111: 4519–4524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wolkowitz OM, Mellon SH, Epel ES, Lin J, Dhabhar FS, Su Y, et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress—preliminary findings. PLoS One 2011; 6: e17837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rius-Ottenheim N, Houben JM, Kromhout D, Kafatos A, van der Mast RC, Zitman FG, et al. Telomere length and mental well-being in elderly men from the Netherlands and Greece. Behav Genet 2012; 42: 278–286.

    Article  PubMed  Google Scholar 

  83. Shaffer JA, Epel E, Kang MS, Ye S, Schwartz JE, Davidson KW, et al. Depressive symptoms are not associated with leukocyte telomere length: findings from the Nova Scotia Health Survey (NSHS95), a population-based study. PLoS One 2012; 7: e48318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Okereke OI, Prescott J, Wong JY, Han J, Rexrode KM, De Vivo I . High phobic anxiety is related to lower leukocyte telomere length in women. PLoS One 2012; 7: e40516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ladwig KH, Brockhaus AC, Baumert J, Lukaschek K, Emeny RT, Kruse J, et al. Posttraumatic stress disorder and not depression is associated with shorter leukocyte telomere length: findings from 3000 participants in the population-based KORA F4 study. PLoS One 2013; 8: e64762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Georgin-Lavialle S, Moura DS, Bruneau J, Chauvet-Gelinier JC, Damaj G, Soucie E, et al. Leukocyte telomere length in mastocytosis: Correlations with depression and perceived stress. Brain Behav Immun 2014; 35: 51–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the National Institute on Aging (Elissa Epel, PI; R01AG033592-01A1). We thank Carolyn Neal, PhD, and Ajay Yesupriya, MPH, for their assistance. B Mezuk is supported by a career development award from the National Institute of Mental Health (K01-MH093642-A1) and the University of Michigan Center for Integrative Approaches to Health Disparities (2P60-MD002249). The sponsors had no role in the design, analysis or interpretation of the findings.

Author Contributions

BN and BM conceptualized the study and drafted the manuscript. BN conducted the data analysis. NB conducted the literature review and provided feedback on the analysis plan. JL and EB developed, executed and oversaw the laboratory portion of the study and provided criteria feedback on the manuscript draft. EE provided criteria feedback on the manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B L Needham.

Ethics declarations

Competing interests

JL, EB and EE were co-founders of Telome Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Needham, B., Mezuk, B., Bareis, N. et al. Depression, anxiety and telomere length in young adults: evidence from the National Health and Nutrition Examination Survey. Mol Psychiatry 20, 520–528 (2015). https://doi.org/10.1038/mp.2014.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.89

This article is cited by

Search

Quick links