Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modeling the functional genomics of autism using human neurons

Abstract

Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, Sonnenblick LI et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet 2009; 5: e1000536.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma D, Salyakina D, Jaworski JM, Konidari I, Whitehead PL, Andersen AN et al. A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 2009; 73 (Part 3): 263–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T et al. Strong association of de novo copy number mutations with autism. Science 2007; 316: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang K, Zhang H, Ma D, Bucan M, Glessner JT, Abrahams BS et al. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 2009; 459: 528–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weiss LA, Arking DE, Daly MJ, Chakravarti A . A genome-wide linkage and association scan reveals novel loci for autism. Nature 2009; 461: 802–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bill BR, Geschwind DH . Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr Opin Genet Dev 2009; 19: 271–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Silverman JL, Yang M, Lord C, Crawley JN . Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010; 11: 490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakatani J, Tamada K, Hatanaka F, Ise S, Ohta H, Inoue K et al. Abnormal behavior in a chromosome-engineered mouse model for human 15q11-13 duplication seen in autism. Cell 2009; 137: 1235–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Flint J, Shifman S . Animal models of psychiatric disease. Curr Opin Genet Dev 2008; 18: 235–240.

    Article  CAS  PubMed  Google Scholar 

  12. Kabashi E, Champagne N, Brustein E, Drapeau P . In the swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 2010; 26: 373–381.

    Article  CAS  PubMed  Google Scholar 

  13. Miller JA, Horvath S, Geschwind DH . Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc Natl Acad Sci USA 2010; 107: 12698–12703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Konopka G, Bomar JM, Winden K, Coppola G, Jonsson ZO, Gao F et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 2009; 462: 213–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S et al. Functional organization of the transcriptome in human brain. Nat Neurosci 2008; 11: 1271–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Plaisier CL, Horvath S, Huertas-Vazquez A, Cruz-Bautista I, Herrera MF, Tusie-Luna T et al. A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia. PLoS Genet 2009; 5: e1000642.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Winden KD, Oldham MC, Mirnics K, Ebert PJ, Swan CH, Levitt P et al. The organization of the transcriptional network in specific neuronal classes. Mol Syst Biol 2009; 5: 291.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Horvath S, Dong J . Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 2008; 4: e1000117.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008; 452: 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Horvath S, Zhang B, Carlson M, Lu KV, Zhu S, Felciano RM et al. Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proc Natl Acad Sci USA 2006; 103: 17402–17407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stadtfeld M, Hochedlinger K . Induced pluripotency: history, mechanisms, and applications. Genes Dev 2010; 24: 2239–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 2010; 107: 4335–4340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bauman ML, Kemper TL . Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005; 23: 183–187.

    Article  PubMed  Google Scholar 

  25. Geschwind DH, Levitt P . Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 2007; 17: 103–111.

    Article  CAS  PubMed  Google Scholar 

  26. Pardo CA, Eberhart CG . The neurobiology of autism. Brain Pathol 2007; 17: 434–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH . Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 2009; 27: 1130–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Svendsen CN, ter Borg MG, Armstrong RJ, Rosser AE, Chandran S, Ostenfeld T et al. A new method for the rapid and long term growth of human neural precursor cells. J Neurosci Methods 1998; 85: 141–152.

    Article  CAS  PubMed  Google Scholar 

  29. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH . Cell culture. Progenitor cells from human brain after death. Nature 2001; 411: 42–43.

    Article  CAS  PubMed  Google Scholar 

  30. Esquenet M, Swinnen JV, Heyns W, Verhoeven G . LNCaP prostatic adenocarcinoma cells derived from low and high passage numbers display divergent responses not only to androgens but also to retinoids. J Steroid Biochem Mol Biol 1997; 62: 391–399.

    Article  CAS  PubMed  Google Scholar 

  31. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abu-Khalil A, Fu L, Grove EA, Zecevic N, Geschwind DH . Wnt genes define distinct boundaries in the developing human brain: implications for human forebrain patterning. J Comp Neurol 2004; 474: 276–288.

    Article  CAS  PubMed  Google Scholar 

  34. Dahlstrand J, Lardelli M, Lendahl U . Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 1995; 84: 109–129.

    Article  CAS  PubMed  Google Scholar 

  35. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A . The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton 1990; 17: 118–132.

    Article  CAS  PubMed  Google Scholar 

  36. Izant JG, McIntosh JR . Microtubule-associated proteins: a monoclonal antibody to MAP2 binds to differentiated neurons. Proc Natl Acad Sci USA 1980; 77: 4741–4745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eng LF . Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 1985; 8: 203–214.

    Article  CAS  PubMed  Google Scholar 

  38. Scales TM, Lin S, Kraus M, Goold RG, Gordon-Weeks PR . Nonprimed and DYRK1A-primed GSK3 beta-phosphorylation sites on MAP1B regulate microtubule dynamics in growing axons. J Cell Sci 2009; 122 (Part 14): 2424–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA et al. Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 2002; 5: 308–315.

    Article  CAS  PubMed  Google Scholar 

  40. Bailey JA, Lahiri DK . Neuronal differentiation is accompanied by increased levels of SNAP-25 protein in fetal rat primary cortical neurons: implications in neuronal plasticity and Alzheimer's disease. Ann N Y Acad Sci 2006; 1086: 54–65.

    Article  CAS  PubMed  Google Scholar 

  41. Flanagan JG, Vanderhaeghen P . The ephrins and Eph receptors in neural development. Annu Rev Neurosci 1998; 21: 309–345.

    Article  CAS  PubMed  Google Scholar 

  42. Pasterkamp RJ, Kolodkin AL . Semaphorin junction: making tracks toward neural connectivity. Curr Opin Neurobiol 2003; 13: 79–89.

    Article  CAS  PubMed  Google Scholar 

  43. O’Leary DD, Sahara S . Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol 2008; 18: 90–100.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gaspard N, Gaillard A, Vanderhaeghen P . Making cortex in a dish: in vitro corticopoiesis from embryonic stem cells. Cell Cycle 2009; 8: 2491–2496.

    Article  CAS  PubMed  Google Scholar 

  45. Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D et al. Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009; 62: 494–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abrahams BS, Geschwind DH . Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9: 341–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T, Ra M et al. Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 2010; 141: 1068–1079.

    Article  CAS  PubMed  Google Scholar 

  48. Fairless R, Masius H, Rohlmann A, Heupel K, Ahmad M, Reissner C et al. Polarized targeting of neurexins to synapses is regulated by their C-terminal sequences. J Neurosci 2008; 28: 12969–12981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Geschwind DH, Konopka G . Neuroscience in the era of functional genomics and systems biology. Nature 2009; 461: 908–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang B, Horvath S . A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005; 4: Article17.

    Article  PubMed  Google Scholar 

  51. Mars WM, Zarnegar R, Michalopoulos GK . Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 1993; 143: 949–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cook Jr EH, Scherer SW . Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455: 919–923.

    Article  CAS  PubMed  Google Scholar 

  53. Crespi B, Badcock C . Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 2008; 31: 241–261; discussion 261–320.

    PubMed  Google Scholar 

  54. Crespi B, Stead P, Elliot M . Evolution in health and medicine Sackler colloquium: Comparative genomics of autism and schizophrenia. Proc Natl Acad Sci USA 2009; 107 (Suppl 1): 1736–1741.

    PubMed  Google Scholar 

  55. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    CAS  PubMed  Google Scholar 

  56. Konopka G . Functional genomics of the brain: uncovering networks in the CNS using a systems approach. Wiley Interdiscip Rev Syst Biol Med 2010; 3: doi: 10.1002/wsbm.139.

    PubMed  Google Scholar 

  57. Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F et al. Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 2010; 26: 363–372.

    Article  CAS  PubMed  Google Scholar 

  58. Scott-Van Zeeland AA, Abrahams BS, Alvarez-Retuerto AI, Sonnenblick LI, Rudie JD, Ghahremani D et al. Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci Transl Med 2010; 2: 56ra80.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Melillo R, Leisman G . Autistic spectrum disorders as functional disconnection syndrome. Rev Neurosci 2009; 20: 111–131.

    Article  PubMed  Google Scholar 

  60. Betancur C, Sakurai T, Buxbaum JD . The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends Neurosci 2009; 32: 402–412.

    Article  CAS  PubMed  Google Scholar 

  61. Sudhof TC . Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008; 455: 903–911.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cantor RM, Geschwind DH . Schizophrenia: genome, interrupted. Neuron 2008; 58: 165–167.

    Article  CAS  PubMed  Google Scholar 

  63. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  64. Noebels JL . The biology of epilepsy genes. Annu Rev Neurosci 2003; 26: 599–625.

    Article  CAS  PubMed  Google Scholar 

  65. Spence SJ, Schneider MT . The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr Res 2009; 65: 599–606.

    Article  PubMed  PubMed Central  Google Scholar 

  66. van Bon BWM, Mefford HC, de Vries BBA . 15q13.3 Microdeletion. In: Pagon RA, Bird TD, Dolan CR, Stephens K (eds). GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2010, December 23.

  67. Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S, Krebs MO et al. De Novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry 2011; 69: 898–901.

    Article  CAS  PubMed  Google Scholar 

  68. Walsh CA, Engle EC . Allelic diversity in human developmental neurogenetics: insights into biology and disease. Neuron 2010; 68: 245–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brooks-Kayal A . Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev 2010; 32: 731–738.

    Article  PubMed  Google Scholar 

  70. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 2006; 354: 1370–1377.

    Article  CAS  PubMed  Google Scholar 

  71. Chu TT, Liu Y . An integrated genomic analysis of gene-function correlation on schizophrenia susceptibility genes. J Hum Genet 2010; 55: 285–292.

    Article  CAS  PubMed  Google Scholar 

  72. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 2008; 115: 1573–1585.

    Article  CAS  PubMed  Google Scholar 

  73. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82: 199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar RA, Sudi J, Babatz TD, Brune CW, Oswald D, Yen M et al. A de novo 1p34.2 microdeletion identifies the synaptic vesicle gene RIMS3 as a novel candidate for autism. J Med Genet 2010; 47: 81–90.

    Article  CAS  PubMed  Google Scholar 

  75. Garbern JY, Neumann M, Trojanowski JQ, Lee VM, Feldman G, Norris JW et al. A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain 2010; 133 (Part 5): 1391–1402.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Egea J, Klein R . Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 2007; 17: 230–238.

    Article  CAS  PubMed  Google Scholar 

  77. Roffers-Agarwal J, Gammill LS . Neuropilin receptors guide distinct phases of sensory and motor neuronal segmentation. Development 2009; 136: 1879–1888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hilario JD, Rodino-Klapac LR, Wang C, Beattie CE . Semaphorin 5A is a bifunctional axon guidance cue for axial motoneurons in vivo. Dev Biol 2009; 326: 190–200.

    Article  CAS  PubMed  Google Scholar 

  79. Sullivan PF . The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 2010; 68: 182–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barbaric I, Gokhale PJ, Andrews PW . High-content screening of small compounds on human embryonic stem cells. Biochem Soc Trans 2010; 38: 1046–1050.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the NIMH (R37MH060233 and R01MH081754) to DHG and the Shappel-Guerin Foundation. GK is supported by an A.P. Giannini Foundation Medical Research Fellowship, a NARSAD Young Investigator Award, and the NIMH (K99MH090238). EW is supported by the NIMH (K08MH074362). Human tissue was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland (NICHD Contract numbers N01-HD-4-3368 and N01-HD-4-3383). The role of the NICHD Brain and Tissue Bank is to distribute tissue and therefore cannot endorse the studies performed or the interpretation of results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D H Geschwind.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konopka, G., Wexler, E., Rosen, E. et al. Modeling the functional genomics of autism using human neurons. Mol Psychiatry 17, 202–214 (2012). https://doi.org/10.1038/mp.2011.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.60

Keywords

This article is cited by

Search

Quick links