Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model

Abstract

Investigating and understanding gene–environment interaction (G × E) in a neurodevelopmentally and biologically plausible manner is a major challenge for schizophrenia research. Hypoxia during neurodevelopment is one of several environmental factors related to the risk of schizophrenia, and links between schizophrenia candidate genes and hypoxia regulation or vascular expression have been proposed. Given the availability of a wealth of complex genetic information on schizophrenia in the literature without knowledge on the connections to environmental factors, we now systematically collected genes from candidate studies (using SzGene), genome-wide association studies (GWAS) and copy number variation (CNV) analyses, and then applied four criteria to test for a (theoretical) link to ischemia–hypoxia and/or vascular factors. In all, 55% of the schizophrenia candidate genes (n=42 genes) met the criteria for a link to ischemia–hypoxia and/or vascular factors. Genes associated with schizophrenia showed a significant, threefold enrichment among genes that were derived from microarray studies of the ischemia–hypoxia response (IHR) in the brain. Thus, the finding of a considerable match between genes associated with the risk of schizophrenia and IHR and/or vascular factors is reproducible. An additional survey of genes identified by GWAS and CNV analyses suggested novel genes that match the criteria. Findings for interactions between specific variants of genes proposed to be IHR and/or vascular factors with obstetric complications in patients with schizophrenia have been reported in the literature. Therefore, the extended gene set defined here may form a reasonable and evidence-based starting point for hypothesis-based testing of G × E interactions in clinical genetic and translational neuroscience studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  2. Lewis DA, Levitt P . Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002; 25: 409–432.

    Article  CAS  PubMed  Google Scholar 

  3. Murray RM, Sham P, Van Os J, Zanelli J, Cannon M, McDonald C . A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr Res 2004; 71: 405–416.

    Article  PubMed  Google Scholar 

  4. van Os J, Kenis G, Rutten BP . The environment and schizophrenia. Nature 2010; 468: 203–212.

    Article  CAS  PubMed  Google Scholar 

  5. Cougnard A, Goumilloux R, Monello F, Verdoux H . Time between schizophrenia onset and first request for disability status in France and associated patient characteristics. Psychiatr Serv 2007; 58: 1427–1432.

    Article  PubMed  Google Scholar 

  6. Dominguez MG, Viechtbauer W, Simons CJ, van Os J, Krabbendam L . Are psychotic psychopathology and neurocognition orthogonal? A systematic review of their associations. Psychol Bull 2009; 135: 157–171.

    Article  Google Scholar 

  7. Owen MJ, Williams NM, O’Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  8. Kirov G, O’Donovan MC, Owen MJ . Finding schizophrenia genes. J Clin Invest 2005; 115: 1440–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gogos JA, Gerber DJ . Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci 2006; 27: 226–233.

    Article  CAS  PubMed  Google Scholar 

  10. Byrne M, Agerbo E, Bennedsen B, Eaton WW, Mortensen PB . Obstetric conditions and risk of first admission with schizophrenia: a Danish national register based study. Schizophr Res 2007; 97: 51–59.

    Article  PubMed  Google Scholar 

  11. Cannon M, Jones PB, Murray RM . Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 2002; 159: 1080–1092.

    Article  PubMed  Google Scholar 

  12. Cannon M, Clarke MC . Risk for schizophrenia—broadening the concepts, pushing back the boundaries. Schizophr Res 2005; 79: 5–13.

    Article  PubMed  Google Scholar 

  13. Mittal VA, Ellman LM, Cannon TD . Gene-environment interaction and covariation in schizophrenia: the role of obstetric complications. Schizophr Bull 2008; 34: 1083–1094.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zornberg GL, Buka SL, Tsuang MT . Hypoxic-ischemia-related fetal/neonatal complications and risk of schizophrenia and other nonaffective psychoses: a 19-year longitudinal study. Am J Psychiatry 2000; 157: 196–202.

    Article  CAS  PubMed  Google Scholar 

  15. Thomas K, Harrison G, Zammit S, Lewis G, Horwood J, Heron J et al. Association of measures of fetal and childhood growth with non-clinical psychotic symptoms in 12-year-olds: the ALSPAC cohort. Br J Psychiatry 2009; 194: 521–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zammit S, Odd D, Horwood J, Thompson A, Thomas K, Menezes P et al. Investigating whether adverse prenatal and perinatal events are associated with non-clinical psychotic symptoms at age 12 years in the ALSPAC birth cohort. Psychol Med 2009; 39: 1457–1467.

    Article  CAS  PubMed  Google Scholar 

  17. Ardizzone I, Marconi A, Nardecchia F . [Obstetric complications and early-onset schizophrenia: a case-control study]. Riv Psichiatr 2009; 44: 117–121.

    PubMed  Google Scholar 

  18. Ballon JS, Dean KA, Cadenhead KS . Obstetrical complications in people at risk for developing schizophrenia. Schizophr Res 2008; 98: 307–311.

    Article  PubMed  Google Scholar 

  19. Moreno D, Moreno-Iniguez M, Vigil D, Castro-Fornieles J, Ortuno F, Gonzalez-Pinto A et al. Obstetric complications as a risk factor for first psychotic episodes in childhood and adolescence. Eur Child Adolesc Psychiatry 2009; 18: 180–184.

    Article  PubMed  Google Scholar 

  20. Lee YM, Jeong CH, Koo SY, Son MJ, Song HS, Bae SK et al. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev Dyn 2001; 220: 175–186.

    Article  CAS  PubMed  Google Scholar 

  21. Maltepe E, Simon C . Oxygen, genes, and development: an analysis of the role of hypoxic gene regulation during murine vascular development. J Mol Med 1998; 76: 391–401.

    Article  CAS  PubMed  Google Scholar 

  22. Cejudo-Martin P, Johnson RS . A new notch in the HIF belt: how hypoxia impacts differentiation. Dev Cell 2005; 9: 575–576.

    Article  CAS  PubMed  Google Scholar 

  23. Chen EY, Fujinaga M, Giaccia AJ . Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development. Teratology 1999; 60: 215–225.

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Chase M, Jung SK, Smith PJ, Loeken MR . Hypoxic stress in diabetic pregnancy contributes to impaired embryo gene expression and defective development by inducing oxidative stress. Am J Physiol Endocrinol Metab 2005; 289: E591–E599.

    Article  CAS  PubMed  Google Scholar 

  25. Semenza GL . HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 2001; 13: 167–171.

    Article  CAS  PubMed  Google Scholar 

  26. Sainson RC, Harris AL . Hypoxia-regulated differentiation: let's step it up a Notch. Trends Mol Med 2006; 12: 141–143.

    Article  CAS  PubMed  Google Scholar 

  27. Raab S, Plate KH . Different networks, common growth factors: shared growth factors and receptors of the vascular and the nervous system. Acta Neuropathol 2007; 113: 607–626.

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt-Kastner R, van Os J, Steinbusch HWM, Schmitz C . Gene regulation by hypoxia and the neurodevelopmental origin of schizophrenia. Schizophr Res 2006; 84: 253–271.

    Article  PubMed  Google Scholar 

  29. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 2008; 40: 827–834.

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt-Kastner R, Zhang B, Belayev L, Khoutorova L, Amin R, Busto R et al. DNA microarray analysis of cortical gene expression during early recirculation after focal brain ischemia in rat. Brain Res Mol Brain Res 2002; 108: 81–93.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidt-Kastner R, Yamamoto H, Hamasaki D, Yamamoto H, Parel JM, Schmitz C et al. Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa. Mol Vision 2008; 14: 125–135.

    CAS  Google Scholar 

  32. Semenza GL . Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007; 2007: cm8.

    Article  PubMed  Google Scholar 

  33. Wenger RH, Stiehl DP, Camenisch G . Integration of oxygen signaling at the consensus HRE. Sci STKE 2008; 2005: re12.

    Google Scholar 

  34. Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C et al. Brain-specific knock-out of hypoxia-inducible factor-1alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci 2005; 25: 4099–4107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ralph GS, Parham S, Lee SR, Beard GL, Craigon MH, Ward N et al. Identification of potential stroke targets by lentiviral vector mediated overexpression of HIF-1 alpha and HIF-2 alpha in a primary neuronal model of hypoxia. J Cereb Blood Flow Metab 2004; 24: 245–258.

    Article  CAS  PubMed  Google Scholar 

  36. Joo EJ, Lee KY, Jeong SH, Roh MS, Kim SH, Ahn YM et al. AKT1 gene polymorphisms and obstetric complications in the patients with schizophrenia. Psychiatry Investig 2009; 6: 102–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, Straub RE et al. Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Mol Psychiatry 2008; 13: 873–877.

    Article  CAS  PubMed  Google Scholar 

  38. Nakahashi T, Fujimura H, Altar CA, Li J, Kambayashi J, Tandon NN et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett 2000; 470: 113–117.

    Article  CAS  PubMed  Google Scholar 

  39. Cannon TD, Yolken R, Buka S, Torrey EF, Collaborative Study Group on the Perinatal Origins of Severe Psychiatric Disorders. Decreased neurotrophic response to birth hypoxia in the etiology of schizophrenia. Biol Psychiatry 2008; 64: 797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arias HR, Richards VE, Ng D, Ghafoori ME, Le V, Mousa SA . Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol 2009; 41: 1441–1451.

    Article  CAS  PubMed  Google Scholar 

  41. Iijima S, Masaki H, Wakayama Y, Inoue M, Jimi T, Hara H et al. Immunohistochemical detection of dysbindin at the astroglial endfeet around the capillaries of mouse brain. J Mol Histol 2009; 40: 117–121.

    Article  CAS  PubMed  Google Scholar 

  42. Haukvik UK, Saetre P, McNeil T, Bjerkan PS, Andreassen OA, Werge T et al. An exploratory model for G x E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 1259–1265.

    Article  CAS  PubMed  Google Scholar 

  43. Boor I, Nagtegaal M, Kamphorst W, van der Valk P, Pronk JC, van Horssen J et al. MLC1 is associated with the dystrophin-glycoprotein complex at astrocytic endfeet. Acta Neuropathol 2007; 114: 403–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda M, Aleksic B, Kinoshita Y, Okochi T, Kawashima K, Kushima I et al. Genome-wide association study of schizophrenia in a Japanese population. Biol Psychiatry 2011; 69: 472–478.

    Article  PubMed  Google Scholar 

  45. Whitehead KJ, Plummer NW, Adams JA, Marchuk DA, Li DY . Ccm1 is required for arterial morphogenesis: implications for the etiology of human cavernous malformations. Development 2004; 131: 1437–1448.

    Article  CAS  PubMed  Google Scholar 

  46. Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 2005; 105: 659–669.

    Article  CAS  PubMed  Google Scholar 

  47. Nadri C, Belmaker RH, Agam G . Oxygen restriction of neonate rats elevates neuregulin-1alpha isoform levels: possible relationship to schizophrenia. Neurochem Int 2007; 51: 447–450.

    Article  CAS  PubMed  Google Scholar 

  48. Hoffmann I, Bueter W, Zscheppang K, Brinkhaus MJ, Liese A, Riemke S et al. Neuregulin-1, the fetal endothelium, and brain damage in preterm newborns. Brain Behav Immun 2010; 24: 784–791.

    Article  CAS  PubMed  Google Scholar 

  49. Afenjar A, Moutard ML, Doummar D, Guët A, Rabier D, Vermersch AI et al. Early neurological phenotype in 4 children with biallelic PRODH mutations. Brain Dev 2007; 29: 547–552.

    Article  PubMed  Google Scholar 

  50. Golan MH, Mane R, Molczadzki G, Zuckerman M, Kaplan-Louson V, Huleihel M et al. Impaired migration signaling in the hippocampus following prenatal hypoxia. Neuropharmacology 2009; 57: 511–522.

    Article  CAS  PubMed  Google Scholar 

  51. Won SJ, Kim SH, Xie L, Wang Y, Mao XO, Jin K et al. Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 2006; 198: 250–259.

    Article  CAS  PubMed  Google Scholar 

  52. Miao RQ, Gao Y, Harrison KD, Prendergast J, Acevedo LM, Yu J et al. Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. Proc Natl Acad Sci USA 2006; 103: 10997–11002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hsu R, Woodroffe A, Lai WS, Cook MN, Mukai J, Dunning JP et al. Nogo receptor 1 (RTN4R) as a candidate gene for schizophrenia: analysis using human and mouse genetic approaches. PLoS One 2007; 2: e1234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ninomiya M, Yamashita T, Araki N, Okano H, Sawamoto K . Enhanced neurogenesis in the ischemic striatum following EGF-induced expansion of transit-amplifying cells in the subventricular zone. Neurosci Lett 2006; 403: 63–67.

    Article  CAS  PubMed  Google Scholar 

  55. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  PubMed  Google Scholar 

  56. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

  57. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 2009; 15: 509–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu XC, Williams AJ, Yao C, Berti R, Hartings JA, Whipple R et al. Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion. J Neurosci Res 2004; 77: 843–857.

    Article  CAS  PubMed  Google Scholar 

  59. Pae CU, Drago A, Kim JJ, Mandelli L, De Ronchi D, Serretti A . The impact of heat shock protein 70 gene variations on clinical presentation and outcome in schizophrenic inpatients. Neuropsychobiology 2009; 59: 135–141.

    Article  CAS  PubMed  Google Scholar 

  60. Carroll LS, Williams NM, Moskvina V, Russell E, Norton N, Williams HJ et al. Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Mol Psychiatry 2010; 15: 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  61. Harada K, Maekawa T, Abu Shama KM, Yamashima T, Yoshida K . Translocation and down-regulation of protein kinase C-alpha, -beta, and -gamma isoforms during ischemia-reperfusion in rat brain. J Neurochem 1999; 72: 2556–2564.

    Article  CAS  PubMed  Google Scholar 

  62. Kanazawa T, Glatt SJ, Faraone SV, Hwu HG, Yoneda H, Tsuang MT . Family-based association study of SELENBP1 in schizophrenia. Schizophr Res 2009; 113: 268–272.

    Article  PubMed  Google Scholar 

  63. Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sásik R, Khanlou N et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA 2005; 102: 15533–15538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scortegagna M, Martin RJ, Kladney RD, Neumann RG, Arbeit JM . Hypoxia-inducible factor-1alpha suppresses squamous carcinogenic progression and epithelial-mesenchymal transition. Cancer Res 2009; 69: 2638–2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burdick KE, DeRosse P, Kane JM, Lencz T, Malhotra AK . Association of genetic variation in the MET proto-oncogene with schizophrenia and general cognitive ability. Am J Psychiatry 2010; 167: 436–443.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nagayama T, Nagayama M, Kohara S, Kamiguchi H, Shibuya M, Katoh Y . Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia. Brain Res 2004; 999: 155–166.

    Article  CAS  PubMed  Google Scholar 

  67. Lencz T, Morgan TV, Athanasiou M, Dain B, Reed CR, Kane JM et al. Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007; 12: 572–580.

    Article  CAS  PubMed  Google Scholar 

  68. Shifman S, Johannesson M, Bronstein M, Chen SX, Collier DA, Craddock NJ et al. Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genet 2008; 4: e28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kirov G, Zaharieva I, Georgieva L, Moskvina V, Nikolov I, Cichon S et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry 2009; 14: 796–803.

    Article  CAS  PubMed  Google Scholar 

  71. Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E et al. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry 2009; 14: 252–260.

    Article  CAS  PubMed  Google Scholar 

  72. O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V . Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet 2008; 40: 1053–1055.

    Article  CAS  PubMed  Google Scholar 

  73. O’Donovan MC, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I et al. Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol Psychiatry 2009; 14: 30–36.

    Article  CAS  PubMed  Google Scholar 

  74. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009; 460: 748–752.

    PubMed Central  Google Scholar 

  75. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe’er I et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 2009; 460: 753–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D et al. Common variants conferring risk of schizophrenia. Nature 2009; 460: 744–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009; 5: e1000373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Chen X, Lee G, Maher BS, Fanous AH, Chen J, Zhao Z et al. GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Mol Psychiatry 2011; 16: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  79. Glessner JT, Reilly MP, Kim CE, Takahashi N, Albano A, Hou C et al. Strong synaptic transmission impact by copy number variations in schizophrenia. Proc Natl Acad Sci USA 2010; 107: 10584–10589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang J, Perlis RH, Lee PH, Rush AJ, Fava M, Sachs GS et al. Cross-disorder genome-wide analysis of schizophrenia, bipolar disorder, and depression. Am J Psychiatry 2010; 167: 1254–1263.

    Article  PubMed  Google Scholar 

  81. Pickard BS, Christoforou A, Thomson PA, Fawkes A, Evans KL, Morris SW et al. Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Mol Psychiatry 2009; 14: 874–884.

    Article  CAS  PubMed  Google Scholar 

  82. Macintyre G, Alford T, Xiong L, Rouleau GA, Tibbo PG, Cox DW . Association of NPAS3 exonic variation with schizophrenia. Schizophr Res 2010; 120: 143–149.

    Article  PubMed  Google Scholar 

  83. Brandon NJ, Millar JK, Korth C, Sive H, Singh KK, Sawa A . Understanding the role of DISC1 in psychiatric disease and during normal development. J Neurosci 2009; 29: 12768–12775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010; 329: 75–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ et al. Genetic evidence for high-altitude adaptation in Tibet. Science 2010; 329: 72–75.

    Article  CAS  PubMed  Google Scholar 

  86. Cook Jr EH, Scherer SW . Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455: 919–923.

    Article  CAS  PubMed  Google Scholar 

  87. Merikangas AK, Corvin AP, Gallagher L . Copy-number variants in neurodevelopmental disorders: promises and challenges. Trends Genet 2009; 25: 536–544.

    Article  CAS  PubMed  Google Scholar 

  88. Sebat J, Levy DL, McCarthy SE . Rare structural variants in schizophrenia: one disorder, multiple mutations; one mutation, multiple disorders. Trends Genet 2009; 25: 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bassett AS, Scherer SW, Brzustowicz LM . Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry 2010; 167: 899–914.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A, Steinberg S et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008; 455: 232–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  PubMed  Google Scholar 

  92. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008; 455: 237–241.

    Article  CAS  Google Scholar 

  93. Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Genetic Risk and Outcome in Psychosis (GROUP) Consortium, Sabatti C, Geurts van Kessel A et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. Am J Hum Genet 2008; 83: 504–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kirov G, Grozeva D, Norton N, Ivanov D, Mantripragada KK, Holmans P et al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Hum Mol Genet 2009; 18: 1497–1503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ikeda M, Aleksic B, Kirov G, Kinoshita Y, Yamanouchi Y, Kitajima T et al. Copy number variation in schizophrenia in the Japanese population. Biol Psychiatry 2010; 67: 283–286.

    Article  PubMed  Google Scholar 

  96. Magri C, Sacchetti E, Traversa M, Valsecchi P, Gardella R, Bonvicini C et al. New copy number variations in schizophrenia. PLoS One 2010; 5: e13422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry 201; 168: 302–316.

    Article  Google Scholar 

  98. Watson JA, Watson CJ, McCann A, Baugh J . Epigenetics, the epicenter of the hypoxic response. Epigenetics 2010; 5: 293–296.

    Article  CAS  PubMed  Google Scholar 

  99. Yang J, Ledaki I, Turley H, Gatter KC, Montero JC, Li JL et al. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases. Ann NY Acad Sci 2009; 1177: 185–197.

    Article  CAS  PubMed  Google Scholar 

  100. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 2009; 106: 4260–4265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Loh YH, Zhang W, Chen X, George J, Ng HH . Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 2007; 21: 2545–2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pollard PJ, Loenarz C, Mole DR, McDonough MA, Gleadle JM, Schofield CJ et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha. Biochem J 2008; 416: 387–394.

    Article  CAS  PubMed  Google Scholar 

  103. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P . The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 2008; 283: 36542–36552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rutten BP, Mill J . Epigenetic mediation of environmental influences in major psychotic disorders. Schizophr Bull 2009; 35: 1045–1056.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shahrzad S, Bertrand K, Minhas K, Coomber BL . Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007; 2: 119–125.

    Article  PubMed  Google Scholar 

  106. Watson JA, Watson CJ, McCrohan AM, Woodfine K, Tosetto M, McDaid J et al. Generation of an epigenetic signature by chronic hypoxia in prostate cells. Hum Mol Genet 2009; 18: 3594–3604.

    Article  CAS  PubMed  Google Scholar 

  107. Endres M, Meisel A, Biniszkiewicz D, Namura S, Prass K, Ruscher K et al. DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 2000; 20: 3175–3181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008; 82: 696–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ivan M, Harris AL, Martelli F, Kulshreshtha R . Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 2008; 12: 1426–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ . Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 2011; 69: 180–187.

    Article  CAS  PubMed  Google Scholar 

  111. The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  112. Ziu M, Fletcher L, Rana S, Jimenez DF, Digicaylioglu M . Temporal differences in microRNA expression patterns in astrocytes and neurons after ischemic injury. PLoS One 2011; 6: e14724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Cannon TD, van Erp TG, Rosso IM, Huttunen M, Lönnqvist J, Pirkola T et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 2002; 59: 35–41.

    Article  PubMed  Google Scholar 

  114. Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 2008; 118: 2200–2208.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Koolschijn PC, van Haren NE, Bakker SC, Hoogendoorn ML, Hulshoff Pol HE, Kahn RS . Effects of brain-derived neurotrophic factor Val66Met polymorphism on hippocampal volume change in schizophrenia. Hippocampus 2010; 20: 1010–1017.

    Article  CAS  PubMed  Google Scholar 

  116. Raznahan A, Greenstein D, Lee Y, Long R, Clasen L, Gochman P et al. Catechol-o-methyl transferase (COMT) val158met polymorphism and adolescent cortical development in patients with childhood-onset schizophrenia, their non-psychotic siblings, and healthy controls. Neuroimage 2011; 57: 1517–1523.

    Article  CAS  PubMed  Google Scholar 

  117. Narr KL, Szeszko PR, Lencz T, Woods RP, Hamilton LS, Phillips O et al. DTNBP1 is associated with imaging phenotypes in schizophrenia. Hum Brain Mapp 2009; 30: 3783–3794.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Addington AM, Gornick MC, Shaw P, Seal J, Gogtay N, Greenstein D et al. Neuregulin 1 (8p12) and childhood-onset schizophrenia: susceptibility haplotypes for diagnosis and brain developmental trajectories. Mol Psychiatry 2007; 12: 195–205.

    Article  CAS  PubMed  Google Scholar 

  119. Haukvik UK, Lawyer G, Bjerkan PS, Hartberg CB, Jönsson EG, McNeil T et al. Cerebral cortical thickness and a history of obstetric complications in schizophrenia. J Psychiatr Res 2009; 43: 1287–1293.

    Article  PubMed  Google Scholar 

  120. Haukvik UK, McNeil T, Nesvåg R, Söderman E, Jönsson E, Agartz I . No effect of obstetric complications on basal ganglia volumes in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34: 619–623.

    Article  PubMed  Google Scholar 

  121. Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ et al. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the consortium on the genetics of schizophrenia. Am J Psychiatry 2011; 168: 930–946.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Nawa H, Takahashi M, Patterson PH . Cytokine and growth factor involvement in schizophrenia—support for the developmental model. Mol Psychiatry 2000; 5: 594–603.

    Article  CAS  PubMed  Google Scholar 

  123. Lips ES, Cornelisse LN, Toonen RF, Min JL, Hultman CM, the International Schizophrenia Consortium, Holmans PA et al. Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia. Mol Psychiatry 2011; doi 10.1038/mp.2011.117.

  124. Dombroski BA, Nayak RR, Ewens KG, Ankener W, Cheung VG, Spielman RS . Gene expression and genetic variation in response to endoplasmic reticulum stress in human cells. Am J Hum Genet 2010; 86: 719–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Collins AL, Kim Y, Sklar P, International Schizophrenia Consortium, O’Donovan MC, Sullivan PF . Hypothesis-driven candidate genes for schizophrenia compared to genome-wide association results. Psychol Med 2011; 19: 1–10.

    Google Scholar 

  126. Richards AL, Jones L, Moskvina V, Kirov G, Gejman PV, Levinson DF et al. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain. Mol Psychiatry 2011. [Epub ahead of print].

  127. Myers RA, Casals F, Gauthier J, Hamdan FF, Keebler J, Boyko AR et al. A population genetic approach to mapping neurological disorder genes using deep resequencing. PLoS Genet 2011; 7: e1001318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Brennand KJ, Simone A, Jiu J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

RS-K is supported by CES COM of FAU, FL, USA. Research of JvO and BPFR on schizophrenia is funded by the European Community's Seventh Framework Programme under Grant agreement no. HEALTH-F2-2009-241909 (Project EU-GEI). BPFR is the recipient of a Veni Award (NWO, Veni, 916.11.086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Schmidt-Kastner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt-Kastner, R., van Os, J., Esquivel, G. et al. An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Mol Psychiatry 17, 1194–1205 (2012). https://doi.org/10.1038/mp.2011.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.183

Keywords

This article is cited by

Search

Quick links