Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression

Abstract

Depression has been associated with changes in responses within the medial prefrontal cortex (mPFC) during emotional information processing. Antidepressant drug treatment has been shown to modify neural responses in healthy volunteers early in treatment within similar circuitry. It is unclear, however, whether the same early effect occurs in depressed patients, before changes in mood. The current study therefore investigated the effects of 7-days administration of the selective serotonin-uptake inhibitor citalopram vs placebo in volunteers (n=29) at a high risk for the development of depression, using the personality phenotype of high neuroticism in a double-blind, between-groups design. On the last day of treatment, resting haemoperfusion and functional magnetic resonance imaging (MRI) data were acquired during a self-referential words categorisation task. A significant activation in a cluster of mPFC areas, including dorsal anterior cingulate and right orbitofrontal cortex was revealed, driven by decreased responses to the negative self-descriptors following citalopram compared with placebo, in the absence of any mood differences. These findings show a normalisation of neural abnormalities in- and at-risk population early in treatment, supporting the theory that antidepressants may indeed act by modifying specific neural dysfunctions correlated to negative cognitive biases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Price JL, Drevets WC . Neurocircuitry of mood disorders. Neuropsychopharmacology 2010; 35: 192–216.

    Article  PubMed  Google Scholar 

  2. Phillips ML, Drevets WC, Rauch SL, Lane R . Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry 2003; 54: 504–514.

    Article  PubMed  Google Scholar 

  3. Phan KL, Wager T, Taylor SF, Liberzon I . Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 2002; 16: 331–348.

    Article  PubMed  Google Scholar 

  4. Rolls ET, Grabenhorst F . The orbitofrontal cortex and beyond: from affect to decision-making. Prog Neurobiol 2008; 86: 216–244.

    Article  PubMed  Google Scholar 

  5. Ochsner KN, Gross JJ . The cognitive control of emotion. Trends Cogn Sci 2005; 9: 242–249.

    Article  PubMed  Google Scholar 

  6. Leppanen JM . Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry 2006; 19: 34–39.

    Article  PubMed  Google Scholar 

  7. Bradley BP, Mogg K, Millar N . Implicit memory bias in clinical and non-clinical depression. Behav Res Ther 1996; 34: 865–879.

    Article  CAS  PubMed  Google Scholar 

  8. Fu CH, Williams SC, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry 2008; 64: 505–512.

    Article  PubMed  Google Scholar 

  9. Yoshimura S, Okamoto Y, Onoda K, Matsunaga M, Ueda K, Suzuki S et al. Rostral anterior cingulate cortex activity mediates the relationship between the depressive symptoms and the medial prefrontal cortex activity. J Affect Disord 2010; 122: 76–85.

    Article  PubMed  Google Scholar 

  10. Beck AT . The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry 2008; 165: 969–977.

    Article  PubMed  Google Scholar 

  11. Davidson RJ, Irwin W, Anderle MJ, Kalin NH . The neural substrates of affective processing in depressed patients treated with venlafaxine. Am J Psychiatry 2003; 160: 64–75.

    Article  PubMed  Google Scholar 

  12. Chen CH, Suckling J, Ooi C, Fu CH, Williams SC, Walsh ND et al. Functional coupling of the amygdala in depressed patients treated with antidepressant medication. Neuropsychopharmacology 2008; 33: 1909–1918.

    Article  CAS  PubMed  Google Scholar 

  13. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 2000; 48: 830–843.

    Article  CAS  PubMed  Google Scholar 

  14. Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 2004; 61: 877–889.

    Article  PubMed  Google Scholar 

  15. Eugene F, Joormann J, Cooney RE, Atlas LY, Gotlib IH . Neural correlates of inhibitory deficits in depression. Psychiatry Res 2010; 181: 30–35.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pardo JV, Sheikh SA, Schwindt GC, Lee JT, Kuskowski MA, Surerus C et al. Chronic vagus nerve stimulation for treatment-resistant depression decreases resting ventromedial prefrontal glucose metabolism. Neuroimage 2008; 42: 879–889.

    Article  PubMed  Google Scholar 

  17. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al. Deep brain stimulation for treatment-resistant depression. Neuron 2005; 45: 651–660.

    Article  CAS  PubMed  Google Scholar 

  18. Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 2004; 61: 34–41.

    Article  PubMed  Google Scholar 

  19. Dichter GS, Felder JN, Smoski MJ . The effects of Brief Behavioral Activation Therapy for Depression on cognitive control in affective contexts: an fMRI investigation. J Affect Disord 2010; 126: 236–244.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harmer CJ . Serotonin and emotional processing: does it help explain antidepressant drug action? Neuropharmacology 2008; 55: 1023–1028.

    Article  CAS  PubMed  Google Scholar 

  21. Harmer CJ, Cowen PJ, Goodwin GM . Efficacy markers in depression. J Psychopharmacol 8 June 2010; e-pub ahead of print.

  22. Harmer CJ, Mackay CE, Reid CB, Cowen PJ, Goodwin GM . Antidepressant drug treatment modifies the neural processing of nonconscious threat cues. Biol Psychiatry 2006; 59: 816–820.

    Article  CAS  PubMed  Google Scholar 

  23. Norbury R, Taylor MJ, Selvaraj S, Murphy SE, Harmer CJ, Cowen PJ . Short-term antidepressant treatment modulates amygdala response to happy faces. Psychopharmacology (Berl) 2009; 206: 197–204.

    Article  CAS  Google Scholar 

  24. Murphy SE, Norbury R, O’Sullivan U, Cowen PJ, Harmer CJ . Effect of a single dose of citalopram on amygdala response to emotional faces. Br J Psychiatry 2009; 194: 535–540.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Norbury R, Mackay CE, Cowen PJ, Goodwin GM, Harmer CJ . The effects of reboxetine on emotional processing in healthy volunteers: an fMRI study. Mol Psychiatry 2008; 13: 1011–1020.

    Article  CAS  PubMed  Google Scholar 

  26. Kendler KS, Gatz M, Gardner CO, Pedersen NL . Personality and major depression: a Swedish longitudinal, population-based twin study. Arch Gen Psychiatry 2006; 63: 1113–1120.

    Article  PubMed  Google Scholar 

  27. Kendler KS, Myers J . The genetic and environmental relationship between major depression and the five-factor model of personality. Psychol Med 2010; 40: 801–806.

    Article  CAS  PubMed  Google Scholar 

  28. Chan SW, Goodwin GM, Harmer CJ . Highly neurotic never-depressed students have negative biases in information processing. Psychol Med 2007; 37: 1281–1291.

    PubMed  Google Scholar 

  29. Chan SW, Harmer CJ, Goodwin GM, Norbury R . Risk for depression is associated with neural biases in emotional categorisation. Neuropsychologia 2008; 46: 2896–2903.

    Article  PubMed  Google Scholar 

  30. Canli T . Toward a neurogenetic theory of neuroticism. Ann N Y Acad Sci 2008; 1129: 153–174.

    Article  PubMed  Google Scholar 

  31. Haas BW, Constable RT, Canli T . Stop the sadness: Neuroticism is associated with sustained medial prefrontal cortex response to emotional facial expressions. Neuroimage 2008; 42: 385–392.

    Article  PubMed  Google Scholar 

  32. Eysenck SBG, Eysenck HJ . Manual of the EPQ (Eysenck Personality Questionnaire). University of London Press: London, 1975.

    Google Scholar 

  33. Spitzer RL, Williams G, Gibbon M . Structured Clinical Interview for the DSM-IV. New York State Psychiatric Institute: New York, 2002.

    Google Scholar 

  34. Spielberger CD, Gorsuch R, Lushene RD . Manual for the State-Trait Anxiety Inventory (STAI). Consulting Psychologists Press: Palo Alto, CA, 1983.

    Google Scholar 

  35. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J . An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561–571.

    Article  CAS  PubMed  Google Scholar 

  36. Weisman AN, Beck AT . Development and validation of the Dysfunctional Attitudes Scale: A preliminary investigation. American Education Research Association: Toronto, Canada, 1978.

    Google Scholar 

  37. Goodyer IM, Herbert J, Tamplin A, Secher SM, Pearson J . Short-term outcome of major depression: II. Life events, family dysfunction, and friendship difficulties as predictors of persistent disorder. J Am Acad Child Adolesc Psychiatry 1997; 36: 474–480.

    Article  CAS  PubMed  Google Scholar 

  38. von Zerssen D, Strian F, Schwarz D . Evaluation of depressive states, especially in longitudinal studies. Mod Probl Pharmacopsychiatry 1974; 7: 189–202.

    Article  CAS  PubMed  Google Scholar 

  39. Anderson N . Likeableness ratings of 555 personality-trait words. J Pers Soc Psychol 1968; 9: 272–279.

    Article  CAS  PubMed  Google Scholar 

  40. Francis W, Kucera A . Frequency Analysis of English Usage: Lexicon and Grammar. Houghton Mifflin: Boston, MA, 1982.

    Google Scholar 

  41. Harmer CJ, Shelley NC, Cowen PJ, Goodwin GM . Increased positive versus negative affective perception and memory in healthy volunteers following selective serotonin and norepinephrine reuptake inhibition. Am J Psychiatry 2004; 161: 1256–1263.

    Article  PubMed  Google Scholar 

  42. Miskowiak K, Papadatou-Pastou M, Cowen PJ, Goodwin GM, Norbury R, Harmer CJ . Single dose antidepressant administration modulates the neural processing of self-referent personality trait words. Neuroimage 2007; 37: 904–911.

    Article  PubMed  Google Scholar 

  43. MacIntosh BJ, Pattinson KTS, Gallichan D, Ahmad I, Miller KL, Feinberg DA et al. Measuring the effects of remifentanil on cerebral blood flow and arterial arrival time using 3D GRASE MRI with pulsed arterial spin labelling. J Cereb Blood Flow Metab 2008; 28: 1514–1522.

    Article  CAS  PubMed  Google Scholar 

  44. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004; 23 (Suppl 1): S208–S219.

    Article  PubMed  Google Scholar 

  45. Jenkinson M, Bannister P, Brady M, Smith SM . Improved optimisation for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002; 17: 825–841.

    Article  PubMed  Google Scholar 

  46. Smith S . Fast and robust automated brain extraction. Hum Brain Mapp 2002; 17: 143–155.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Beckmann CF, Smith SM . Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans on Med Imaging 2004; 23: 137–152.

    Article  Google Scholar 

  48. Woolrich MW, Ripley BD, Brady M, Smith SM . Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 2001; 14: 1370–1386.

    Article  CAS  PubMed  Google Scholar 

  49. Woolrich MW, Behrens TE, Beckmann CF, Jenkinson M, Smith SM . Multilevel linear modelling for FMRI group analysis using Bayesian inference. Neuroimage 2004; 21: 1732–1747.

    Article  PubMed  Google Scholar 

  50. Friston K, Worsley KJ, farckowiak RSJ, Mazziotta JC, Evans AC . Assessing the significance of focal activations using their spatial extent. Hum Brain Mapp 1994; 1: 210–220.

    Article  CAS  PubMed  Google Scholar 

  51. Talaraich J, Tournoux P . Co-planar stereotaxic atlas of the human brain: three-dimensional proportional system. Thieme Medical, New York, 1988.

    Google Scholar 

  52. Chappell MA, Okell TW, Jezzard P, Woolrich MW . Vascular territory image analysis using vessel encoded arterial spin labeling. Med Image Comput Comput Assist Interv 2009; 12 (Part 2): 514–521.

    PubMed  Google Scholar 

  53. Nichols TE, Holmes AP . Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002; 15: 1–25.

    Article  PubMed  Google Scholar 

  54. Rudebeck PH, Bannerman DM, Rushworth MF . The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn Affect Behav Neurosci 2008; 8: 485–497.

    Article  CAS  PubMed  Google Scholar 

  55. Carmichael ST, Price JL . Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol 1995; 363: 642–664.

    Article  CAS  PubMed  Google Scholar 

  56. Bush G, Luu P, Posner MI . Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000; 4: 215–222.

    Article  CAS  PubMed  Google Scholar 

  57. Haas BW, Omura K, Constable RT, Canli T . Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav Neurosci 2007; 121: 249–256.

    Article  PubMed  Google Scholar 

  58. Mannie ZN, Norbury R, Murphy SE, Inkster B, Harmer CJ, Cowen PJ . Affective modulation of anterior cingulate cortex in young people at increased familial risk of depression. Br J Psychiatry 2008; 192: 356–361.

    Article  PubMed  Google Scholar 

  59. Gotlib IH, Hamilton JP, Cooney RE, Singh MK, Henry ML, Joormann J . Neural processing of reward and loss in girls at risk for major depression. Arch Gen Psychiatry 2010; 67: 380–387.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Longe O, Maratos FA, Gilbert P, Evans G, Volker F, Rockliff H et al. Having a word with yourself: neural correlates of self-criticism and self-reassurance. Neuroimage 2010; 49: 1849–1856.

    Article  PubMed  Google Scholar 

  61. Eugene F, Levesque J, Mensour B, Leroux JM, Beaudoin G, Bourgouin P et al. The impact of individual differences on the neural circuitry underlying sadness. Neuroimage 2003; 19 (2 Part 1): 354–364.

    Article  PubMed  Google Scholar 

  62. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD et al. For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage 2004; 23: 483–499.

    Article  PubMed  Google Scholar 

  63. Cunningham WA, Raye CL, Johnson MK . Implicit and explicit evaluation: FMRI correlates of valence, emotional intensity, and control in the processing of attitudes. J Cogn Neurosci 2004; 16: 1717–1729.

    Article  PubMed  Google Scholar 

  64. Raichle ME, Snyder AZ . A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007; 37: 1083–1090; discussion 97–9.

    Article  PubMed  Google Scholar 

  65. Sheline YI, Price JL, Yan Z, Mintun MA . Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci USA 2010; 107: 11020–11025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ et al. The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 2009; 106: 1942–1947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lemogne C, Mayberg H, Bergouignan L, Volle E, Delaveau P, Lehericy S et al. Self-referential processing and the prefrontal cortex over the course of depression: a pilot study. J Affect Disord 2010; 124: 196–201.

    Article  PubMed  Google Scholar 

  68. Grimm S, Ernst J, Boesiger P, Schuepbach D, Hell D, Boeker H et al. Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline structures. Hum Brain Mapp 2009; 30: 2617–2627.

    Article  PubMed  Google Scholar 

  69. Papageorgiou C, Wells A (eds). Depressive ruminatio: nature, theory and treatment. John Wiley and Sons: West Sussex, 2004.

    Google Scholar 

  70. Harmer CJ, Goodwin GM, Cowen PJ . Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action. Br J Psychiatry 2009; 195: 102–108.

    Article  PubMed  Google Scholar 

  71. Rawlings N, Norbury R, Cowen PJ, Harmer CJ . A single dose of mirtazapine modulates neural responses to emotional faces in healthy people. Psychopharmacology (Berl) 2010; 212: 625–634.

    Article  CAS  Google Scholar 

  72. Harmer CJ, O’Sullivan U, Favaron E, Massey-Chase R, Ayres R, Reinecke A et al. Effect of acute antidepressant administration on negative affective bias in depressed patients. Am J Psychiatry 2009; 166: 1178–1184.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a Medical Research Council grant to Dr Catherine Harmer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Di Simplicio.

Ethics declarations

Competing interests

MD and RN report no conflicts of interest. CJH has served as a consultant for P1vital, GlaxoSmithKline, Servier, Astra Zeneca, Johnson & Johnson, Lundbeck and is on the advisory board and holds shares of P1vital.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Simplicio, M., Norbury, R. & Harmer, C. Short-term antidepressant administration reduces negative self-referential processing in the medial prefrontal cortex in subjects at risk for depression. Mol Psychiatry 17, 503–510 (2012). https://doi.org/10.1038/mp.2011.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2011.16

Keywords

This article is cited by

Search

Quick links