Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors

Abstract

Non-coding regulatory elements can transduce the human genome's response to environmental stimuli. Thus, there is a possibility that variation in non-coding regulatory elements may underlie some of the diversity in human behavior. However, this idea has remained largely untested due to the difficulty in accurately identifying regulatory elements in the 98% of the human genome that does not encode protein. The recent recognition that small trans-acting RNAs anneal to mRNA and regulate gene expression provides a means to identify and test such variants. Here, we show that microRNA-directed silencing of mRNA can be attenuated by a common human polymorphism. We have identified an element (A-element) within serotonin receptor 1B (HTR1B) mRNA that confers repression by miR-96. The repressive activity of this element is attenuated by a common human variant (G-element) that disrupts a nucleotide critical for its interaction with miR-96. Because deletion of the HTR1B gene leads to an aggressive phenotype in mice, we hypothesized an association between the A/G polymorphism and aggressive phenotypes in a sample of 359 college students. As predicted, individuals homozygous for the ancestral A-element reported more conduct-disorder behaviors than individuals with the G-element. Our studies suggest that such functional variants may be common and may help to refine the search for genes involved in complex behavioral disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 3
Figure 1
Figure 2
Figure 4

Similar content being viewed by others

References

  1. King MC, Wilson AC . Evolution at two levels in humans and chimpanzees. Science 1975; 188: 107–116.

    Article  CAS  Google Scholar 

  2. Hellmann I, Zollner S, Enard W, Ebersberger I, Nickel B, Paabo S . Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res 2003; 13: 831–837.

    Article  CAS  Google Scholar 

  3. Hammock EA, Young LJ . Microsatellite instability generates diversity in brain and sociobehavioral traits. Science 2005; 308: 1630–1634.

    Article  CAS  Google Scholar 

  4. Lee RC, Ambros V . An extensive class of small RNAs in Caenorhabditis elegans. Science 2001; 294: 862–864.

    Article  CAS  Google Scholar 

  5. Lau NC, Lim LP, Weinstein EG, Bartel DP . An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001; 294: 858–862.

    Article  CAS  Google Scholar 

  6. Hutvagner G, Zamore PD . A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297: 2056–2060.

    Article  CAS  Google Scholar 

  7. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T . Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004; 15: 185–197.

    Article  CAS  Google Scholar 

  8. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  Google Scholar 

  9. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86–89.

    Article  CAS  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  11. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  Google Scholar 

  12. Doench JG, Sharp PA . Specificity of microRNA target selection in translational repression. Genes Dev 2004; 18: 504–511.

    Article  CAS  Google Scholar 

  13. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 2006; 38: 813–818.

    Article  CAS  Google Scholar 

  14. Chen K, Rajewsky N . Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 2006; 38: 1452–1456.

    Article  CAS  Google Scholar 

  15. Saunders MA, Liang H, Li WH . Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 2007; 104: 3300–3305.

    Article  CAS  Google Scholar 

  16. Adams BD, Furneaux H, White BA . The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol 2007; 21: 1132–1147.

    Article  CAS  Google Scholar 

  17. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L et al. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 1994; 265: 1875–1878.

    Article  CAS  Google Scholar 

  18. Covault J, Tennen H, Armeli S, Conner TS, Herman AI, Cillessen AH et al. Interactive effects of the serotonin transporter 5-HTTLPR polymorphism and stressful life events on college student drinking and drug use. Biol Psychiatry 2006; 61: 609–619.

    Article  Google Scholar 

  19. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . Human microRNA targets. PLoS Biol 2004; 2: e363.

    Article  Google Scholar 

  20. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  Google Scholar 

  21. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507–1517.

    Article  CAS  Google Scholar 

  22. International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–1320.

    Article  Google Scholar 

  23. Cohen J . Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Erlbaum Associates: Hillsdale, NJ, 1988.

    Google Scholar 

  24. Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 2007; 81: 405–413.

    Article  CAS  Google Scholar 

  25. Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem 2007; 282: 24262–24269.

    Article  CAS  Google Scholar 

  26. Mishra PJ, Humeniuk R, Longo-Sorbello GS, Banerjee D, Bertino JR . A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007; 104: 13513–13518.

    Article  CAS  Google Scholar 

  27. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 2005; 310: 317–320.

    Article  CAS  Google Scholar 

  28. Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R et al. The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry 2003; 8: 98–102.

    Article  CAS  Google Scholar 

  29. Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 2002; 7: 718–725.

    Article  CAS  Google Scholar 

  30. Smoller JW, Biederman J, Arbeitman L, Doyle AE, Fagerness J, Perlis RH et al. Association between the 5HT1B receptor gene (HTR1B) and the inattentive subtype of ADHD. Biol Psychiatry 2006; 59: 460–467.

    Article  CAS  Google Scholar 

  31. Mundo E, Richter MA, Zai G, Sam F, McBride J, Macciardi F et al. 5HT1Dbeta receptor gene implicated in the pathogenesis of obsessive-compulsive disorder: further evidence from a family-based association study. Mol Psychiatry 2002; 7: 805–809.

    Article  CAS  Google Scholar 

  32. Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL et al. Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 1998; 55: 989–994.

    Article  CAS  Google Scholar 

  33. Huang YY, Oquendo MA, Friedman JM, Greenhill LL, Brodsky B, Malone KM et al. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology 2003; 28: 163–169.

    Article  CAS  Google Scholar 

  34. Ickowicz A, Feng Y, Wigg K, Quist J, Pathare T, Roberts W et al. The serotonin receptor HTR1B: gene polymorphisms in attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144: 121–125.

    Article  Google Scholar 

  35. Kranzler HR, Hernandez-Avila CA, Gelernter J . Polymorphism of the 5-HT1B receptor gene (HTR1B): strong within-locus linkage disequilibrium without association to antisocial substance dependence. Neuropsychopharmacology 2002; 26: 115–122.

    Article  CAS  Google Scholar 

  36. Proudnikov D, LaForge KS, Hofflich H, Levenstien M, Gordon D, Barral S et al. Association analysis of polymorphisms in serotonin 1B receptor (HTR1B) gene with heroin addiction: a comparison of molecular and statistically estimated haplotypes. Pharmacogenet Genomics 2006; 16: 25–36.

    Article  CAS  Google Scholar 

  37. Conner TS, Jensen KP, Tennen H, Covault J, Furneaux HM, Kranzler HR . Broadening the genetic basis of emotionality: a polymorphism in the serotonin 1B receptor gene is associated with feelings of anger and hostility in daily life among young men (manuscript under review).

  38. Lautenberger JA, Stephens JC, O'Brien SJ, Smith MW . Significant admixture linkage disequilibrium across 30 cM around the FY locus in African Americans. Am J Hum Genet 2000; 66: 969–978.

    Article  CAS  Google Scholar 

  39. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 2004; 14: 2486–2494.

    Article  CAS  Google Scholar 

  40. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V . Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 2004; 5: R13.

    Article  Google Scholar 

  41. Voight BF, Kudaravalli S, Wen X, Pritchard JK . A map of recent positive selection in the human genome. PLoS Biol 2006; 4: e72.

    Article  Google Scholar 

  42. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 2007; 39: 31–40.

    Article  CAS  Google Scholar 

  43. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A . Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 2007; 445: 666–670.

    Article  CAS  Google Scholar 

  44. Loeber R, Burke JD, Lahey BB, Winters A, Zera M . Oppositional defiant and conduct disorder: a review of the past 10 years, part I. J Am Acad Child Adolesc Psychiatry 2000; 39: 1468–1484.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grants P50 AA03510, M01 RR06192 (University of Connecticut GCRC), K24 AA13736, T32 AA07290 and DA 022226. We gratefully acknowledge the assistance of Nicholas Maltby for web programming and the technical assistance of Linda Burian.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H M Furneaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K., Covault, J., Conner, T. et al. A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14, 381–389 (2009). https://doi.org/10.1038/mp.2008.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.15

Keywords

This article is cited by

Search

Quick links