Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG)

Abstract

Treatment in medical oncology is gradually shifting from the use of nonspecific chemotherapeutic agents toward an era of novel targeted therapy in which drugs and their combinations target specific aspects of the biology of tumor cells. Multiple myeloma (MM) has become one of the best examples in this regard, reflected in the identification of new pathogenic mechanisms, together with the development of novel drugs that are being explored from the preclinical setting to the early phases of clinical development. We review the biological rationale for the use of the most important new agents for treating MM and summarize their clinical activity in an increasingly busy field. First, we discuss data from already approved and active agents (including second- and third-generation proteasome inhibitors (PIs), immunomodulatory agents and alkylators). Next, we focus on agents with novel mechanisms of action, such as monoclonal antibodies (MoAbs), cell cycle-specific drugs, deacetylase inhibitors, agents acting on the unfolded protein response, signaling transduction pathway inhibitors and kinase inhibitors. Among this plethora of new agents or mechanisms, some are specially promising: anti-CD38 MoAb, such as daratumumab, are the first antibodies with clinical activity as single agents in MM. Moreover, the kinesin spindle protein inhibitor Arry-520 is effective in monotherapy as well as in combination with dexamethasone in heavily pretreated patients. Immunotherapy against MM is also being explored, and probably the most attractive example of this approach is the combination of the anti-CS1 MoAb elotuzumab with lenalidomide and dexamethasone, which has produced exciting results in the relapsed/refractory setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Greene JA, Jones DS, Podolsky SH . Therapeutic evolution and the challenge of rational medicine. N Engl J Med 2012; 367: 1077–1082.

    Article  CAS  PubMed  Google Scholar 

  2. Kyle RA, Rajkumar SV . Multiple myeloma. N Engl J Med 2004; 351: 1860–1873.

    Article  CAS  PubMed  Google Scholar 

  3. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar SK, Lee JH, Lahuerta JJ, Morgan G, Richardson PG, Crowley J et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia 2012; 26: 1153.

    Article  Google Scholar 

  6. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson KC . New insights into therapeutic targets in myeloma. Hematol Am Soc Hematol Educ Program 2011; 2011: 184–190.

    Article  Google Scholar 

  8. Boyd KD, Davies FE, Morgan GJ . Novel drugs in myeloma: harnessing tumour biology to treat myeloma. Recent Results Cancer Res 2011; 183: 151–187.

    Article  PubMed  Google Scholar 

  9. Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF . New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol 2008; 9: 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  10. Arrigo AP, Tanaka K, Goldberg AL, Welch WJ . Identity of the 19S ‘prosome’ particle with the large multifunctional protease complex of mammalian cells (the proteasome). Nature 1988; 331: 192–194.

    Article  CAS  PubMed  Google Scholar 

  11. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59: 2615–2622.

    CAS  PubMed  Google Scholar 

  12. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  13. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  14. Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007; 110: 3557–3560.

    Article  CAS  PubMed  Google Scholar 

  15. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101: 1530–1534.

    Article  CAS  PubMed  Google Scholar 

  17. Hideshima T, Richardson PG, Anderson KC . Targeting proteasome inhibition in hematologic malignancies. Rev Clin Exp Hematol 2003; 7: 191–204.

    CAS  PubMed  Google Scholar 

  18. Carvalho P, Goder V, Rapoport TA . Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 2006; 126: 361–373.

    Article  CAS  PubMed  Google Scholar 

  19. Raasi S, Wolf DH . Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin Cell Dev Biol 2007; 18: 780–791.

    Article  CAS  PubMed  Google Scholar 

  20. Karin M . How NF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 1999; 18: 6867–6874.

    Article  CAS  PubMed  Google Scholar 

  21. Vij R, Wang M, Kaufman JL, Lonial S, Jakubowiak AJ, Stewart AK et al. An open-label, single-arm, phase 2 (PX-171-004) study of single-agent carfilzomib in bortezomib-naive patients with relapsed and/or refractory multiple myeloma. Blood 2012; 119: 5661–5670.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012; 120: 2817–2825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vij R, Siegel DS, Jagannath S, Jakubowiak AJ, Stewart AK, McDonagh K et al. An open-label, single-arm, phase 2 study of single-agent carfilzomib in patients with relapsed and/or refractory multiple myeloma who have been previously treated with bortezomib. Br J Haematol 2012; 158: 739–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singhal S, Siegel DS, Martin T, Vij R, Wang L, Jakubowiak AJ et al. Integrated safety from phase 2 studies of monotherapy carfilzomib in patients with relapsed and refractory multiple myeloma (MM): an updated analysis. ASH Ann Meet Abstr 2011; 118: 1876.

    Google Scholar 

  25. Badros AZ, Vij R, Martin T, Zonder JA, Kunkel L, Wang Z et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 2013; 27: 1707–1714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang M, Martin T, Bensinger W, Alsina M, Siegel DSD, Kavalerchik E et al. Final results from the phase Ib/II study (PX-171-006) of carfilzomib, lenalidomide, and low-dose dexamethasone (CRd) in patients with relapsed or progressive multiple myeloma. ASCO Meet Abstr 2013; 31 (15_suppl): 8529.

    Google Scholar 

  27. Moreau P, Palumbo AP, Stewart AK, Rajkumar V, Jakubowiak AJ, Halka K et al. A randomized, multicenter, phase (Ph) III study comparing carfilzomib (CFZ), lenalidomide (LEN), and dexamethasone (Dex) to LEN and Dex in patients (Pts) with relapsed multiple myeloma (MM). ASCO Meet Abstr 2011; 29 (15_suppl): TPS225.

    Google Scholar 

  28. Jakubowiak AJ, Dytfeld D, Jagannath S, Vesole DH, Anderson TB, Nordgren BK et al. Final results of a frontline phase 1/2 study of carfilzomib, lenalidomide, and low-dose dexamethasone (CRd) in multiple myeloma (MM). ASH Ann Meet Abstr 2011; 118: 631.

    Google Scholar 

  29. Korde N, Zingone A, Kwok M, Manasanch EE, Wu P, Tageja N et al. Phase II clinical and correlative study of carfilzomib, lenalidomide, and dexamethasone followed by lenalidomide extended dosing (CRD–R) in newly diagnosed multiple myeloma (MM) patients. Haematologica 2013; 98, Abstract 228.

  30. Sonneveld P, Asselbergs E, Zweegman S, Van der Holt B, Kersten MJ, Vellenga E et al. Carfilzomib combined with thalidomide and dexamethasone (CTD) is an highly effective induction and consolidation treatment in newly diagnosed patients with multiple myeloma (MM) who are transplant candidate. ASH Ann Meet Abstr 2012; 120: 333.

    Google Scholar 

  31. Mikhael JR, Reeder CB, Libby EN III, Costa LJ, Bergsagel PL, Buadi F et al. Results from the phase II dose expansion of cyclophosphamide, carfilzomib, thalidomide and dexamethasone (CYCLONE) in patients with newly diagnosed multiple myeloma. ASH Ann Meet Abstr 2012; 120: 445.

    Google Scholar 

  32. Bringhen S, Cavallo F, Petrucci MT, Gay F, Federico V, Conticello C et al. Carfilzomib, cyclophosphamide and dexamethasone (CCD) for newly diagnosed multiple myeloma (MM) patients: initial results of a multicenter, open label phase II study. Haematologica 2013; 98, Abstract S578.

  33. Touzeau C, Kolb B, Hulin C, Caillot D, Benboubker L, Tiab M et al. Effect of CMP, carfilzomib (CFZ) plus melphalan-prednisone (MP), on response rates in elderly patients (pts) with newly diagnosed multiple myeloma (NDMM): results of a phase (Ph) I/II trial. ASCO Meet Abstr 2013; 31 (15_suppl): 8513.

    Google Scholar 

  34. Berdeja JG, Hart L, Lamar R, Murphy P, Morgan S, Flinn IW . Phase I/II study of panobinostat and carfilzomib in patients (pts) with relapsed or refractory multiple myeloma (MM), interim phase i safety analysis. ASH Ann Meet Abstr 2012; 120: 4048.

    Google Scholar 

  35. Shah JJ, Thomas SK, Weber DM, Wang M, Alexanian R, Qazilbash MH et al. Phase 1/1b study of the efficacy and safety of the combination of panobinostat+carfilzomib in patients with relapsed and/or refractory multiple myeloma. ASH Ann Meet Abstr 2012; 120: 4081.

    Google Scholar 

  36. Kauffman J, Zimmerman T, Jakubowiak A, Rosenbaum C, Lewis C, Harvey RD et al. Phase I study of the combination of carfilzomib and panobinostat for patients with relapsed and refractory myeloma: a multicenter MMRC clinical trial. Haematologica 2013; 98, Abstract P771.

  37. Shah JJ, Stadtmauer EA, Abonour R, Cohen AD, Bensinger WI, Gasparetto C et al. A multi-center phase i/ii trial of carfilzomib and pomalidomide with dexamethasone (Car-Pom-d) in patients with relapsed/refractory multiple myeloma. ASH Ann Meet Abstr 2012; 120: 74.

    Google Scholar 

  38. Shah JJ, Weber DM, Thomas SK, Alexanian R, Wang M, Qazilbash MH et al. Phase 1 Study of the novel kinesin spindle protein inhibitor ARRY-520+carfilzomib in patients with relapsed and/or refractory multiple myeloma. ASH Ann Meet Abstr 2012; 120: 4082.

    Google Scholar 

  39. Shah JJ, Thomas S, Weber DM, Wang M, Orlowski R . Phase 1 study of the novel kinesin spindle protein inhibitor Arry–520+carfilzomib(Car) in patients with relapsed and/or refractory multiple myeloma (RRMM). Haematologica 2013; 98, Abstract S579.

  40. Zhou HJ, Aujay MA, Bennett MK, Dajee M, Demo SD, Fang Y et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem 2009; 52: 3028–3038.

    Article  CAS  PubMed  Google Scholar 

  41. Savona MR, Berdeja JG, Lee SJ, Wong H, Lee JR, Gillenwater HH et al. A phase 1b dose-escalation study of split-dose oprozomib (ONX0912) in patients with hematologic malignancies. ASH Ann Meet Abstr 2012; 120: 203.

    Google Scholar 

  42. Kaufman JL, Siegel D, Vij R, Ghobrial IM, Badros AZ, Neuman L et al. Clinical profile of once–daily, modified–release oprozomib tablets in patients with hematologic malignancies: results of a phase 1b/2 trial. Haematologica 2013; 98, Abstract P233.

  43. Kumar S, Bensinger W, Zimmerman TM, Reeder CB, Berenson JR, Berg D et al. Weekly MLN9708, an investigational oral proteasome inhibitor (PI), in relapsed/refractory multiple myeloma (MM): results from a phase I study after full enrollment. ASCO Meet Abstr 2013; 31 (15_suppl): 8514.

    Google Scholar 

  44. Lonial S, Baz RC, Wang M, Talpaz M, Liu G, Berg D et al. Phase I study of twice-weekly dosing of the investigational oral proteasome inhibitor MLN9708 in patients (pts) with relapsed and/or refractory multiple myeloma (MM). ASCO Meet Abstr 2012; 30 (15_suppl): 8017.

    Google Scholar 

  45. San Miguel J, Hajek R, Spicka I, Chen C, Echeveste A, Schusterbauer C et al. Oral MLN9708, an investigational proteasome inhibitor, in combination with melphalan and prednisone in patients with previously untreated multiple myeloma: a phase 1 study. Haematologica 2012; 97, Abstract 293.

  46. Kumar SK, Berdeja JG, Niesvizky R, Lonial S, Hamadani M, Stewart AK et al. A phase 1/2 study of weekly MLN9708, an investigational oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma (MM). ASH Ann Meet Abstr 2012; 120: 332.

    Google Scholar 

  47. Richardson PG, Spencer A, Cannell P, Harrison SJ, Catley L, Underhill C et al. Phase 1 clinical evaluation of twice-weekly marizomib (NPI-0052), a novel proteasome inhibitor, in patients with relapsed/refractory multiple myeloma (MM). ASH Ann Meet Abstr 2011; 118: 302.

    Google Scholar 

  48. Barlogie B, Desikan R, Eddlemon P, Spencer T, Zeldis J, Munshi N et al. Extended survival in advanced and refractory multiple myeloma after single-agent thalidomide: identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001; 98: 492–494.

    Article  CAS  PubMed  Google Scholar 

  49. Singhal S, Mehta J, Desikan R, Ayers D, Roberson P, Eddlemon P et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med 1999; 341: 1565–1571.

    Article  CAS  PubMed  Google Scholar 

  50. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327: 1345–1350.

    Article  CAS  PubMed  Google Scholar 

  51. Zhu YX, Braggio E, Shi CX, Bruins LA, Schmidt JE, Van Wier S et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011; 118: 4771–4779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012; 26: 2326–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li S, Pal R, Monaghan SA, Schafer P, Ouyang H, Mapara M et al. IMiD immunomodulatory compounds block C/EBP{beta} translation through eIF4E down-regulation resulting in inhibition of MM. Blood 2011; 117: 5157–5165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lopez-Girona A, Heintel D, Zhang LH, Mendy D, Gaidarova S, Brady H et al. Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol 2011; 154: 325–336.

    Article  CAS  PubMed  Google Scholar 

  55. Hideshima T, Chauhan D, Shima Y, Raje N, Davies FE, Tai YT et al. Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 2000; 96: 2943–2950.

    Article  CAS  PubMed  Google Scholar 

  56. Gandhi AK, Kang J, Capone L, Parton A, Wu L, Zhang LH et al. Dexamethasone synergizes with lenalidomide to inhibit multiple myeloma tumor growth, but reduces lenalidomide-induced immunomodulation of T and NK cell function. Curr Cancer Drug Targets 2010; 10: 155–167.

    Article  CAS  PubMed  Google Scholar 

  57. Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, Brady HA, Gandhi AK, Schafer PH et al. Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res 2009; 69: 7347–7356.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 2001; 15: 1950–1961.

    Article  CAS  PubMed  Google Scholar 

  59. Chang DH, Liu N, Klimek V, Hassoun H, Mazumder A, Nimer SD et al. Enhancement of ligand-dependent activation of human natural killer T cells by lenalidomide: therapeutic implications. Blood 2006; 108: 618–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu L, Adams M, Carter T, Chen R, Muller G, Stirling D et al. lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin Cancer Res 2008; 14: 4650–4657.

    Article  CAS  PubMed  Google Scholar 

  61. Galustian C, Meyer B, Labarthe MC, Dredge K, Klaschka D, Henry J et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 2009; 58: 1033–1045.

    Article  CAS  PubMed  Google Scholar 

  62. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  64. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.

    Article  CAS  PubMed  Google Scholar 

  65. Dimopoulos MA, Chen C, Spencer A, Niesvizky R, Attal M, Stadtmauer EA et al. Long-term follow-up on overall survival from the MM-009 and MM-010 phase III trials of lenalidomide plus dexamethasone in patients with relapsed or refractory multiple myeloma. Leukemia 2009; 23: 2147–2152.

    Article  CAS  PubMed  Google Scholar 

  66. Richardson PG, Siegel D, Baz R, Kelley SL, Munshi NC, Laubach J et al. Phase 1 study of pomalidomide MTD, safety, and efficacy in patients with refractory multiple myeloma who have received lenalidomide and bortezomib. Blood 2013; 121: 1961–1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lacy MQ, Hayman SR, Gertz MA, Dispenzieri A, Buadi F, Kumar S et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol 2009; 27: 5008–5014.

    Article  CAS  PubMed  Google Scholar 

  68. Lacy MQ, Hayman SR, Gertz MA, Short KD, Dispenzieri A, Kumar S et al. Pomalidomide (CC4047) plus low dose dexamethasone (Pom/dex) is active and well tolerated in lenalidomide refractory multiple myeloma (MM). Leukemia 2010; 24: 1934–1939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lacy MQ, Kumar SK, LaPlant BR, Laumann K, Gertz MA, Hayman SR et al. Pomalidomide plus low-dose dexamethasone (Pom/Dex) in relapsed myeloma: long term follow up and factors predicing outcome in 345 patients. ASH Ann Meet Abstr 2012; 120: 201.

    Google Scholar 

  70. Lacy MQ, Allred JB, Gertz MA, Hayman SR, Short KD, Buadi F et al. Pomalidomide plus low-dose dexamethasone in myeloma refractory to both bortezomib and lenalidomide: comparison of 2 dosing strategies in dual-refractory disease. Blood 2011; 118: 2970–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leleu X, Attal M, Arnulf B, Moreau P, Traulle C, Marit G et al. Pomalidomide plus low-dose dexamethasone is active and well tolerated in bortezomib and lenalidomide-refractory multiple myeloma: Intergroupe Francophone du Myelome 2009-02. Blood 2013; 121: 1968–1975.

    Article  CAS  PubMed  Google Scholar 

  72. San-Miguel JF, Weisel KC, Moreau P, Lacy M, Song KW, Delforge M et al. MM-003: A phase III, multicenter, randomized, open-label study of pomalidomide (POM) plus low-dose dexamethasone (LoDEX) versus high-dose dexamethasone (HiDEX) in relapsed/refractory multiple myeloma (RRMM). ASCO Meet Abstr 2013; 31 (15_suppl): 8510.

    Google Scholar 

  73. Usmani SZ, Hansen E, Steward D, Waheed S, Panozzo SB, Petty NM et al. Phase II study of pomalidomide (Pom) in genomically defined high risk relapsed and refractory multiple myeloma (RRMM). ASH Ann Meet Abstr 2012; 120: 4083.

    Google Scholar 

  74. Ponisch W, Mitrou PS, Merkle K, Herold M, Assmann M, Wilhelm G et al. Treatment of bendamustine and prednisone in patients with newly diagnosed multiple myeloma results in superior complete response rate, prolonged time to treatment failure and improved quality of life compared to treatment with melphalan and prednisone—a randomized phase III study of the East German Study Group of Hematology and Oncology (OSHO). J Cancer Res Clin Oncol 2006; 132: 205–212.

    Article  CAS  PubMed  Google Scholar 

  75. Berenson JR, Yellin O, Bessudo A, Boccia RV, Noga SJ, Gravenor DS et al. Bendamustine combined with bortezomib has efficacy in patients with relapsed or refractory multiple myeloma: a phase 1/2 study. ASH Ann Meet Abstr 2011; 118: 1857.

    Google Scholar 

  76. Poenisch W, Bourgeois M, Wang S-Y, Heyn S, Jaekel N, Braunert L et al. Bortezomib in combination with bendamustine and prednisone in the treatment of patients with refractory/relapsed multiple myeloma. ASH Ann Meet Abstr 2007; 110: 2723.

    Google Scholar 

  77. Ludwig H, Kasparu H, Linkesch W, Thaler J, Greil R, Leitgeb C et al. Bortezomib-bendamustine-dexamethasone in patients with relapsed/refractory multiple myeloma (MM) shows marked efficacy and is well tolerated, but assessment of pnp symptoms shows significant discrepancies between patients and physicians. ASH Ann Meet Abstr 2011; 118: 2928.

    Google Scholar 

  78. Hrusovsky I, Heidtmann H-H . Combination therapy of bortezomib with bendamustin in elderly patients with advanced multiple myeloma. Clinical Observation. ASH Ann Meet Abstr 2007; 110: 4851.

    Google Scholar 

  79. Rodon P, Hulin C, Pegourie B, Tiab M, Anglaret B, Ben-Boubker L et al. Bendamustine, bortezomib and dexamethasone (BVD) in elderly mm progressive after 1st line therapy (IFM 2009–01 Trial): predictive factors of defavourable outcome. Haematologica 2013; 98, Abstract P231.

  80. Ponisch W, Rozanski M, Goldschmidt H, Hoffmann FA, Boldt T, Schwarzer A et al. Combined bendamustine, prednisolone and thalidomide for refractory or relapsed multiple myeloma after autologous stem-cell transplantation or conventional chemotherapy: results of a Phase I clinical trial. Br J Haematol 2008; 143: 191–200.

    Article  PubMed  CAS  Google Scholar 

  81. Ramasamy K, Hazel B, Mahmood S, Corderoy S, Schey S . Bendamustine in combination with thalidomide and dexamethasone is an effective therapy for myeloma patients with end stage renal disease. Br J Haematol 2011; 155: 632–634.

    Article  CAS  PubMed  Google Scholar 

  82. Grey-Davies E, Bosworth JL, Boyd KD, Ebdon C, Saso R, Chitnavis D et al. Bendamustine, thalidomide and dexamethasone is an effective salvage regimen for advanced stage multiple myeloma. Br J Haematol 2012; 156: 552–555, Author reply 555.

    Article  CAS  PubMed  Google Scholar 

  83. Lentzsch S, O'Sullivan A, Kennedy RC, Abbas M, Dai L, Pregja SL et al. Combination of bendamustine, lenalidomide, and dexamethasone (BLD) in patients with relapsed or refractory multiple myeloma is feasible and highly effective: results of phase 1/2 open-label, dose escalation study. Blood 2012; 119: 4608–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ponisch W, Heyn S, Beck J, Wagner I, Mohren M, Hoffmann FA et al. Lenalidomide, bendamustine and prednisolone exhibits a favourable safety and efficacy profile in relapsed or refractory multiple myeloma: final results of a phase 1 clinical trial OSHO—#077. Br J Haematol 2013; 162: 202–209.

    Article  PubMed  CAS  Google Scholar 

  85. Chauhan D, Ray A, Viktorsson K, Spira J, Paba-Prada C, Munshi N et al. In vitro and in vivo antitumor activity of a novel alkylating agent, melphalan-flufenamide, against multiple myeloma cells. Clin Cancer Res 2013; 19: 3019–3031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Richardson PG, Lonial S, Jakubowiak AJ, Harousseau JL, Anderson KC . Monoclonal antibodies in the treatment of multiple myeloma. Br J Haematol 2011; 154: 745–754.

    Article  CAS  PubMed  Google Scholar 

  87. van de Donk NW, Kamps S, Mutis T, Lokhorst HM . Monoclonal antibody-based therapy as a new treatment strategy in multiple myeloma. Leukemia 2012; 26: 199–213.

    Article  CAS  PubMed  Google Scholar 

  88. Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 2012; 120: 552–559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lonial S, Vij R, Harousseau JL, Facon T, Moreau P, Mazumder A et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J Clin Oncol 2012; 30: 1953–1959.

    Article  CAS  PubMed  Google Scholar 

  90. Richardson PG, Jagannath S, Moreau P, Jakubowiak A, Raab MS, Facon T et al. A phase 2 study of elotuzumab (Elo) in combination with lenalidomide and low-dose dexamethasone (Ld) in patients (pts) with relapsed/refractory multiple myeloma (R/R MM): updated results. ASH Ann Meet Abstr 2012; 120: 202.

    Google Scholar 

  91. Facon T, Richardson PG, Jagannath S, Moreau P, Jakubowiak A, Raab M et al. Phase I/II study of elotuzumabplus lenalidomide/dexamethasone in relapsed/refractory multiple myeloma: updated phase ii results and phase i/ii long term safety. Haematologica 2013; 98, Abstract 228.

  92. Plesner T, Lokhorst H, Gimsing P, Nahi H, Lisby S, Richardson PG . Daratumumab, a CD38 monoclonal antibody in patients with multiple myeloma - data from a dose-escalation phase i/ii study. ASH Ann Meet Abstr 2012; 120: 73.

    Google Scholar 

  93. Lokhorst HM, Plesner T, Gimsing P, Nahi H, Minnema M, Lassen UN et al. Phase I/II dose-escalation study of daratumumab in patients with relapsed or refractory multiple myeloma. ASCO Meet Abstr 2013; 31 (15_suppl): 8512.

    Google Scholar 

  94. Chanan-Khan A, Wolf JL, Garcia J, Gharibo M, Jagannath S, Manfredi D et al. Efficacy analysis from phase I study of lorvotuzumab mertansine (IMGN901), used as monotherapy, in patients with heavily pre-treated CD56-Positive multiple myeloma - a preliminary efficacy analysis. ASH Ann Meet Abstr 2010; 116: 1962.

    Google Scholar 

  95. Jagannath S, Chanan-Khan A, Heffner LT, Avigan D, Zimmerman TM, Lonial S et al. BT062, an antibody-drug conjugate directed against CD138, Shows clinical activity in patients with relapsed or relapsed/refractory multiple myeloma. ASH Ann Meet Abstr 2011; 118: 305.

    Google Scholar 

  96. Heffner LT, Jagannath S, Zimmerman TM, Lee KP, Rosenblatt J, Lonial S et al. BT062, an antibody-drug conjugate directed against CD138, given weekly for 3 weeks in each 4 week cycle: safety and further evidence of clinical activity. ASH Ann Meet Abstr 2012; 120: 4042.

    Google Scholar 

  97. Bensinger W, Maziarz RT, Jagannath S, Spencer A, Durrant S, Becker PS et al. A phase 1 study of lucatumumab, a fully human anti-CD40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br J Haematol 2012; 159: 58–66.

    Article  CAS  PubMed  Google Scholar 

  98. Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica 2010; 95: 845–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Raje N, Faber EA Jr, Richardson PG, Schiller GJ, Hohl RJ, Cohen AD et al. Phase 1 study of tabalumab, a human anti-BAFF Antibody and bortezomib in patients with previously-treated multiple myeloma. ASH Ann Meet Abstr 2012; 120: 447.

    Google Scholar 

  100. Voorhees PM, Manges RF, Sonneveld P, Jagannath S, Somlo G, Krishnan A et al. A phase 2 multicenter study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. ASH Ann Meet Abstr 2011; 118: 3971.

    Google Scholar 

  101. Rossi J-F, Manges RF, Sutherland HJ, Jagannath S, Voorhees P, Sonneveld P et al. Preliminary results of CNTO 328, an anti-interleukin-6 monoclonal antibody, in combination with bortezomib in the treatment of relapsed or refractory multiple myeloma. ASH Ann Meet Abstr 2008; 112: 867.

    Google Scholar 

  102. San Miguel J, Blade J, Samoilova OS, Novgorod N, Shpilberg O, Grosicki S et al. Randomized, open–label, phase 2 study of siltuximab (an anti–IL–6 Mab) and bortezomib–melphalan–prednisone versus bortezomib–melphalan–prednisone in patients with previously untreated multiple myeloma. Haematologica 2013; 98, Abstract P225.

  103. Benson DM Jr, Hofmeister CC, Padmanabhan S, Suvannasankha A, Jagganath S, Abonour R et al. A phase I trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 2012; 120: 4324–4333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Benson DM Jr, Cohen AD, Munshi NC, Jagannath S, Spitzer G, Hofmeister CC et al. A phase I trial of the anti-inhibitory KIR antibody, IPH2101, and lenalidomide in multiple myeloma: interim results. ASH Ann Meet Abstr 2012; 120: 4058.

    Google Scholar 

  105. Ocio EM, San Miguel JF . The DAC system and associations with multiple myeloma. Invest New Drugs 2010; 28 (Suppl 1): S28–S35.

    Article  PubMed  CAS  Google Scholar 

  106. Dokmanovic M, Clarke C, Marks PA . Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007; 5: 981–989.

    Article  CAS  PubMed  Google Scholar 

  107. Witt O, Deubzer HE, Milde T, Oehme I . HDAC family: What are the cancer relevant targets? Cancer Lett 2009; 277: 8–21.

    Article  CAS  PubMed  Google Scholar 

  108. Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006; 108: 3441–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maiso P, Carvajal-Vergara X, Ocio EM, Lopez-Perez R, Mateo G, Gutierrez N et al. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 2006; 66: 5781–5789.

    Article  CAS  PubMed  Google Scholar 

  110. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101: 540–545.

    Article  CAS  PubMed  Google Scholar 

  111. Khan SB, Maududi T, Barton K, Ayers J, Alkan S . Analysis of histone deacetylase inhibitor, depsipeptide (FR901228), effect on multiple myeloma. Br J Haematol 2004; 125: 156–161.

    Article  CAS  PubMed  Google Scholar 

  112. Todoerti K, Barbui V, Pedrini O, Lionetti M, Fossati G, Mascagni P et al. Pleiotropic anti-myeloma activity of ITF2357: inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 2010; 95: 260–269.

    Article  CAS  PubMed  Google Scholar 

  113. Chesi M, Matthews GM, Garbitt VM, Palmer SE, Shortt J, Lefebure M et al. Drug response in a genetically engineered mouse model of multiple myeloma is predictive of clinical efficacy. Blood 2012; 120: 376–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Galli M, Salmoiraghi S, Golay J, Gozzini A, Crippa C, Pescosta N et al. A phase II multiple dose clinical trial of histone deacetylase inhibitor ITF2357 in patients with relapsed or progressive multiple myeloma. Ann Hematol 2010; 89: 185–190.

    Article  CAS  PubMed  Google Scholar 

  115. Niesvizky R, Ely S, Mark T, Aggarwal S, Gabrilove JL, Wright JJ et al. Phase 2 trial of the histone deacetylase inhibitor romidepsin for the treatment of refractory multiple myeloma. Cancer 2011; 117: 336–342.

    Article  CAS  PubMed  Google Scholar 

  116. Richardson P, Mitsiades C, Colson K, Reilly E, McBride L, Chiao J et al. Phase I trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) in patients with advanced multiple myeloma. Leuk Lymphoma 2008; 49: 502–507.

    Article  CAS  PubMed  Google Scholar 

  117. Wolf JL, Siegel D, Goldschmidt H, Hazell K, Bourquelot PM, Bengoudifa BR et al. Phase II trial of the pan-deacetylase inhibitor panobinostat as a single agent in advanced relapsed/refractory multiple myeloma. Leuk Lymphoma 2012; 53: 1820–1823.

    Article  CAS  PubMed  Google Scholar 

  118. Badros A, Burger AM, Philip S, Niesvizky R, Kolla SS, Goloubeva O et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res 2009; 15: 5250–5257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Harrison SJ, Quach H, Link E, Seymour JF, Ritchie DS, Ruell S et al. A high rate of durable responses with romidepsin, bortezomib, and dexamethasone in relapsed or refractory multiple myeloma. Blood 2011; 118: 6274–6283.

    Article  CAS  PubMed  Google Scholar 

  120. San Miguel J, Sezer O, Gunther A, Siegel D, Blade J, Leblanc R et al. Phase Ib dose-escalation study of oral panobinostat and iv bortezomib in patients with relapsed or relapsed and refractory multiple myeloma: updated results. Haematol IMW Meet Abstr 2011; 96 (Supp-1): P-238.

    Google Scholar 

  121. Weber DM, Graef T, Hussein M, Sobecks RM, Schiller GJ, Lupinacci L et al. Phase I trial of vorinostat combined with bortezomib for the treatment of relapsing and/or refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 2012; 12: 319–324.

    Article  CAS  PubMed  Google Scholar 

  122. Leleu X, Touzeau C, Benboubker L, Facon T, Delain M, Fourneau N et al. Phase Ib dose escalation study of oral quisinostat, a histone deacetylase inhibitor, in combination with bortezomib and dexamethasone for patients with relapsed multiple myeloma. ASCO Meet Abstr 2013; 31 (15_suppl): 8530.

    Google Scholar 

  123. Dimopoulos MA, Jagannath S, Yoon S-S, Siegel DS, Lonial S, Hajek R et al. Vantage 088: vorinostat in combination with bortezomib in patients with relapsed/refractory multiple myeloma: results of a global, randomized phase 3 trial. ASH Ann Meet Abstr 2011; 118: 811.

    Google Scholar 

  124. Siegel DS, Dimopoulos MA, Yoon S-S, Laubach JP, Kaufman JL, Goldschmidt H et al. Vantage 095: vorinostat in combination with bortezomib in salvage multiple myeloma patients: final study results of a global phase 2b trial. ASH Ann Meet Abstr 2011; 118: 480.

    Google Scholar 

  125. Richardson PG, Schlossman RL, Alsina M, Weber DM, Coutre SE, Gasparetto C et al. PANORAMA 2: panobinostat in combination with bortezomib and dexamethasone in patients with relapsed and bortezomib-refractory myeloma. Blood 2013; 122: 2331–2337.

    Article  CAS  PubMed  Google Scholar 

  126. Raje N, Hari PN, Vogl DT, Jagannath S, Orlowski RZ, Supko JG et al. Rocilinostat (ACY-1215), a selective HDAC6 inhibitor, alone and in combination with bortezomib in multiple myeloma: preliminary results from the first-in-humans phase I/II study. ASH Ann Meet Abstr 2012; 120: 4061.

    Google Scholar 

  127. Raje N, Mahindra A, Vogl D, Voorhees PM, Bensinger W, Parameswaran RV et al. New drug partner for combination therapy in multiple myeloma (MM): development of ACY–1215, a selective histone deacetylase 6 inhibitor alone and in combination with bortezomib or lenalidomide. Haematologica 2013; 98, Abstract P765.

  128. Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B, Shaughnessy J Jr . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood 2005; 106: 296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Stewart AK, Vij R, Laubach JP, Hofmeister CC, Hagerty R, Dueck AC et al. Phase I study of aurora kinase inhibitor MLN8237 and bortezomib in relapsed or refractory multiple myeloma. ASH Ann Meet Abstr 2012; 120: 1859.

    Google Scholar 

  130. Shah JJ, Zonder J, Cohen A, Orlowski RZ, Alexanian R, Thomas SK et al. ARRY-520 shows durable responses in patients with relapsed/refractory multiple myeloma in a phase 1 dose-escalation study. ASH Ann Meet Abstr 2011; 118: 1860.

    Google Scholar 

  131. Shah JJ, Zonder JA, Cohen A, Bensinger W, Kaufman JL, Orlowski RZ et al. The novel KSP inhibitor ARRY-520 is active both with and without low-dose dexamethasone in patients with multiple myeloma refractory to bortezomib and lenalidomide: results from a phase 2 study. ASH Ann Meet Abstr 2012; 120: 449.

    Google Scholar 

  132. Zhu YX, Tiedemann R, Shi CX, Yin H, Schmidt JE, Bruins LA et al. RNAi screen of the druggable genome identifies modulators of proteasome inhibitor sensitivity in myeloma including CDK5. Blood 2011; 117: 3847–3857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kumar SK, LaPlant BR, Chng WJ, Zonder JA, Callander N, Roy V et al. Phase 1/2 trial of a novel CDK inhibitor dinaciclib (SCH727965) in patients with relapsed multiple myeloma demonstrates encouraging single agent activity. ASH Ann Meet Abstr 2012; 120: 76.

    Google Scholar 

  134. Scheid C, Reece D, Beksac M, Spencer A, Callander N, Sonneveld P et al. A phase 2, multicenter, nonrandomized, open-label study of dovitinib (TKI258) in patients with relapsed or refractory multiple myeloma with or without t(4;14) translocation. ASH Ann Meet Abstr 2012; 120: 4055.

    Google Scholar 

  135. Trudel S, Bergsagel PL, Singhal S, Niesvizky R, Comenzo RL, Bensinger WI et al. A phase I study of the safety and pharmacokinetics of escalating doses of MFGR1877S, a fibroblast growth factor receptor 3 (FGFR3) antibody, in patients with relapsed or refractory t(4;14)-positive multiple myeloma. ASH Ann Meet Abstr 2012; 120: 4029.

    Google Scholar 

  136. Arnulf B, Ghez D, Leblond V, Choquet S, Belhadj K, Macro M et al. FGFR3 tyrosine kinase inhibitor AB1010 as treatment of t(4;14) multiple myeloma. Blood 2007; 110: 128a Abstract 413.

    Article  Google Scholar 

  137. Dispenzieri A, Gertz MA, Lacy MQ, Geyer SM, Greipp PR, Rajkumar SV et al. A phase II trial of imatinib in patients with refractory/relapsed myeloma. Leuk Lymphoma 2006; 47: 39–42.

    Article  CAS  PubMed  Google Scholar 

  138. Wildes TM, Procknow E, Gao F, Dipersio JF, Vij R . Dasatinib in relapsed or plateau-phase multiple myeloma. Leuk Lymphoma 2009; 50: 137–140.

    Article  CAS  PubMed  Google Scholar 

  139. Facon T, Leleu X, Stewart AK, Spencer A, Rowlings P, Hulin C et al. Dasatinib in combination with lenalidomide and dexamethasone in patients with relapsed or refractory multiple myeloma: preliminary results of a phase I study. ASH Ann Meet Abstr 2009; 114: 1876.

    Google Scholar 

  140. Callander NS, Markovina S, Juckett MB, Wagner E, Kolesar J, Longo W et al. The addition of bevacizumab (B) to lenalidomide and low dose dexamethasone does not significantly increase response in relapsed or refractory multiple myeloma (NCI#7317). ASH Ann Meet Abstr 2009; 114: 3885.

    Google Scholar 

  141. Lacy MQ, Alsina M, Fonseca R, Paccagnella ML, Melvin CL, Yin D et al. Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulinlike growth factor type 1 Receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J Clin Oncol 2008; 26: 3196–3203.

    Article  CAS  PubMed  Google Scholar 

  142. Moreau P, Cavallo F, Leleu X, Hulin C, Amiot M, Descamps G et al. Phase I study of the anti insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody, AVE1642, as single agent and in combination with bortezomib in patients with relapsed multiple myeloma. Leukemia 2011; 25: 872–874.

    Article  CAS  PubMed  Google Scholar 

  143. von Tresckow B, Boll B, Eichenauer DA, Peine D, Knop S, Goebeler M et al. A phase II clinical trial of the anti-EGFR antibody cetuximab in patients with refractory or relapsed multiple myeloma: final results. ASH Ann Meet Abstr 2011; 118: 3965.

    Google Scholar 

  144. Ghobrial IM, Munshi NC, Harris BN, Shi P, Porter NM, Schlossman RL et al. A phase I safety study of enzastaurin plus bortezomib in the treatment of relapsed or refractory multiple myeloma. Am J Hematol 2011; 86: 573–578.

    Article  CAS  PubMed  Google Scholar 

  145. Richardson PG, Badros AZ, Jagannath S, Tarantolo S, Wolf JL, Albitar M et al. Tanespimycin with bortezomib: activity in relapsed/refractory patients with multiple myeloma. Br J Haematol 2010; 150: 428–437.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Richardson PG, Chanan-Khan AA, Lonial S, Krishnan AY, Carroll MP, Alsina M et al. Tanespimycin and bortezomib combination treatment in patients with relapsed or relapsed and refractory multiple myeloma: results of a phase 1/2 study. Br J Haematol 2011; 153: 729–740.

    Article  CAS  PubMed  Google Scholar 

  147. Richardson P, Lonial S, Jakubowiak A, Krishnan A, Wolf J, Densmore J et al. Multi-center phase II study of perifosine (KRX-0401) alone and in combination with dexamethasone (dex) for patients with relapsed or relapsed/refractory multiple myeloma (MM): promising activity as combination therapy with manageable toxicity. Blood 2007; 110: 353a Abstract 1164.

    Article  Google Scholar 

  148. Richardson PG, Wolf J, Jakubowiak A, Zonder J, Lonial S, Irwin D et al. Perifosine plus bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma previously treated with bortezomib: results of a multicenter phase I/II trial. J Clin Oncol 2011; 29: 4243–4249.

    Article  CAS  PubMed  Google Scholar 

  149. Jakubowiak AJ, Richardson PG, Zimmerman T, Alsina M, Kaufman JL, Kandarpa M et al. Perifosine plus lenalidomide and dexamethasone in relapsed and relapsed/refractory multiple myeloma: a Phase I Multiple Myeloma Research Consortium study. Br J Haematol 2012; 158: 472–480.

    Article  CAS  PubMed  Google Scholar 

  150. Spencer A, Yoon S-S, Harrison SJ, Morris S, Smith D, Freedman SJ et al. Novel AKT inhibitor GSK2110183 shows favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. preliminary results from a phase I first-time-in-human study. ASH Ann Meet Abstr 2011; 118: 1856.

    Google Scholar 

  151. Guenther A, Baumann P, Burger R, Klapper W, Schmidmaier R, Gramatzki M . Single-agent everolimus (RAD001) in patients with relapsed or refractory multiple myeloma: Final results of a phase I study. ASCO Meet Abstr 2010; 28 (15_suppl): 8137.

    Google Scholar 

  152. Farag SS, Zhang S, Jansak BS, Wang X, Kraut E, Chan K et al. Phase II trial of temsirolimus in patients with relapsed or refractory multiple myeloma. Leuk Res 2009; 33: 1475–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ghobrial IM, Weller E, Vij R, Munshi NC, Banwait R, Bagshaw M et al. Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol 2011; 12: 263–272.

    Article  CAS  PubMed  Google Scholar 

  154. Mahindra A, Richardson PG, Hari P, Sohani AR, Laubach JP, Burke J et al. Updated results of a phase I study of RAD001 in combination with lenalidomide in patients with relapsed or refractory multiple myeloma with pharmacodynamic and pharmacokinetic analysis. ASH Ann Meet Abstr 2010; 116: 3051.

    Google Scholar 

  155. Yee AJ, Mahindra AK, Richardson PG, Cirstea DD, Scullen TA, Rodig SJ et al. Biomarker correlation with outcomes in patients with relapsed or refractory multiple myeloma on a phase I study of everolimus in combination with lenalidomide. ASH Ann Meet Abstr 2011; 118: 3966.

    Google Scholar 

  156. Hofmeister CC, Yang X, Pichiorri F, Chen P, Rozewski DM, Johnson AJ et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J Clin Oncol 2011; 29: 3427–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ghobrial IM, Siegel D, Vij R, Wolf JL, Berdeja JG, Matous JV et al. MLN0128 (INK128), an investigational oral dual TORC1/2 inhibitor, in patients (pts) with relapsed or refractory multiple myeloma (MM), non-hodgkin's lymphoma (NHL), or Waldenstrom macroglobulinemia (WM): preliminary results from a phase 1 dose-escalation study. ASH Ann Meet Abstr 2012; 120: 4038.

    Google Scholar 

  158. Alsina M, Fonseca R, Wilson EF, Belle AN, Gerbino E, Price-Troska T et al. Farnesyltransferase inhibitor tipifarnib is well tolerated, induces stabilization of disease, and inhibits farnesylation and oncogenic/tumor survival pathways in patients with advanced multiple myeloma. Blood 2004; 103: 3271–3277.

    Article  CAS  PubMed  Google Scholar 

  159. Holkova B, Badros AZ, Geller R, Voorhees PM, Zingone A, Korde N et al. A phase II study of the MEK 1/2 inhibitor AZD6244 (selumetinib, ARRY-142866) in relapsed or refractory multiple myeloma. ASH Ann Meet Abstr 2011; 118: 2931.

    Google Scholar 

  160. Siegel DS, Krishnan A, Lonial S, Chatta G, Alsina M, Jagannath S et al. Phase II trial of SCIO-469 as monotherapy (M) or in combination with bortezomib (MB) in relapsed refractory multiple myeloma (MM). Blood 2006; 108, Abstract 3580.

  161. Mateos MV, Cibeira MT, Richardson PG, Prosper F, Oriol A, de la Rubia J et al. Phase II clinical and pharmacokinetic study of plitidepsin 3-hour infusion every two weeks alone or with dexamethasone in relapsed and refractory multiple myeloma. Clin Cancer Res 2010; 16: 3260–3269.

    Article  CAS  PubMed  Google Scholar 

  162. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471: 467–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lehners N, Andrulis M, Capper D, von Deimling A, Ho AD, Goldschmidt H et al. BRAF V600E mutations in multiple myeloma: clinical and therapeutic implications. ASH Ann Meet Abstr 2012; 120: 4040.

    Google Scholar 

  164. Chen W, Qiu L, Hou J, Zhang X, Ke X, Wang Z et al. Phase Ib study of recombinant circularly permuted TRAIL (CPT) in relapsed or refractory multiple myeloma patients. ASH Ann Meet Abstr 2012; 120: 1857.

    Google Scholar 

  165. Chen W, Qiu L, Hou J, Zhao Y, Pan L, Yang S et al. Recombinant circularly permuted TRAIL (CPT) for the treatment of relapsed or refractory multiple myeloma: an open-label, multicenter phase II clinical trial. ASH Ann Meet Abstr 2012; 120: 78.

    Google Scholar 

  166. Chen W, Hou J, Zhao Y, Qiu L, Ke X, Wang Z et al. Circularly permuted TRAIL (CPT) combined with thalidomide for the treatment of relapsed or refractory multiple myeloma: an open-label, multicenter phase II clinical trial. ASH Ann Meet Abstr 2012; 120: 2958.

    Google Scholar 

  167. Ocio EM, De La Rubia J, Oriol-Rocafiguera A, Blade J, Rodriguez J, Coronado C et al. Phase II optimization, open-label clinical trial of zalypsis(R) (PM00104) in relapsed/refractory multiple myeloma patients. ASH Ann Meet Abstr 2012; 120: 4041.

    Google Scholar 

  168. Neri P, Duggan P, Gratton K, Ren L, Johnson J, Slaby J et al. Phase I study of the PARP1-2 inhibitor veliparib in combination with bortezomib in patients with relapsed or refractory multiple myeloma. ASH Ann Meet Abstr 2012; 120: 1862.

    Google Scholar 

  169. Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino AC . The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25: 1533–1542.

    Article  CAS  PubMed  Google Scholar 

  170. Ghobrial IM, Laubach J, Armand P, Boswell E, Hanlon C, Chuma S et al. Phase I study of TH-302, an investigational hypoxia-targeted drug, and dexamethasone in patients with relapsed/refractory multiple myeloma. ASCO Meet Abstr 2013; 31 (15_suppl): 8602.

    Google Scholar 

  171. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19: 2048–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19: 3640–3648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cell/myeloma fusion vaccine. J Immunother 2011; 34: 409–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116: 2286–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. O'Connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF et al. A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 2009; 15: 7085–7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Alsina M, Trudel S, Furman RR, Rosen PJ, O'Connor OA, Comenzo RL et al. A phase I single-agent study of twice-weekly consecutive-day dosing of the proteasome inhibitor carfilzomib in patients with relapsed or refractory multiple myeloma or lymphoma. Clin Cancer Res 2012; 18: 4830–4840.

    Article  CAS  PubMed  Google Scholar 

  177. Jagannath S, Vij R, Stewart AK, Trudel S, Jakubowiak AJ, Reiman T et al. An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 2012; 12: 310–318.

    Article  CAS  PubMed  Google Scholar 

  178. diCapua Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Jagannath S et al. Results of PX-171-003-A1, an open-label, single-arm, phase 2 (Ph 2) Study of carfilzomib (CFZ) in patients (pts) with relapsed and refractory multiple myeloma (MM). ASH Ann Meet Abstr 2010; 116: 985.

    Google Scholar 

  179. Schey SA, Fields P, Bartlett JB, Clarke IA, Ashan G, Knight RD et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J Clin Oncol 2004; 22: 3269–3276.

    Article  CAS  PubMed  Google Scholar 

  180. Streetly MJ, Gyertson K, Daniel Y, Zeldis JB, Kazmi M, Schey SA . Alternate day pomalidomide retains anti-myeloma effect with reduced adverse events and evidence of in vivo immunomodulation. Br J Haematol 2008; 141: 41–51.

    Article  CAS  PubMed  Google Scholar 

  181. Richardson PG, Siegel DS, Vij R, Hofmeister CC, Jagannath S, Chen C et al. Randomized, open label phase 1/2 study of pomalidomide (POM) alone or in combination with low-dose dexamethasone (LoDex) in patients (Pts) with relapsed and refractory multiple myeloma who have received prior treatment that includes lenalidomide (LEN) and bortezomib (BORT): phase 2 results. ASH Ann Meet Abstr 2011; 118: 634.

    Google Scholar 

  182. Siegel DSD, Richardson PGG, Vij R, Hofmeister CC, Baz RC, Jagannath S et al. Long-term safety and efficacy of pomalidomide (POM) with or without low-dose dexamethasone (LoDEX) in relapsed and refractory multiple myeloma (RRMM) patients enrolled in the MM-002 phase II trial. ASCO Meet Abstr 2013; 31 (15_suppl): 8588.

    Google Scholar 

  183. Mark TM, Boyer A, Rossi AC, Shah M, Pearse RN, Zafar F et al. ClaPD (clarithromycin, pomalidomide, dexamethasone) therapy in relapsed or refractory multiple myeloma. ASH Ann Meet Abstr 2012; 120: 77.

    Google Scholar 

  184. Hilger JD, Berenson JR, Klein LM, Bessudo A, Rosen PJ, Eshaghian S et al. A phase I/II study (NCT01541332) of pomalidomide (POM), dexamethasone (DEX), and pegylated liposomal doxorubicin (PLD) for patients with relapsed/refractory (R/R) multiple myeloma (MM). ASCO Meet Abstr 2013; 31 (15_suppl): 8598.

    Google Scholar 

  185. Richardson PGG, Hofmeister CC, Siegel DSD, Lonial S, Laubach J, Efebera YA et al. MM-005: a phase I trial of pomalidomide, bortezomib, and low-dose dexamethasone (PVD) in relapsed and/or refractory multiple myeloma (RRMM). ASCO Meet Abstr 2013; 31 (15_suppl): 8584.

    Google Scholar 

  186. Baz R, Shain KH, Alsina M, Nardelli LA, Nishihori T, Ochoa L et al. Oral weekly cyclophosphamide in combination with pomalidomide and dexamethasone for relapsed and refractory myeloma: report of the dose escalation cohort. ASH Ann Meet Abstr 2012; 120: 4062.

    Google Scholar 

  187. Larocca A, Montefusco V, Bringhen S, Rossi D, Crippa C, Mina R et al. Pomalidomide, cyclophosphamide, and prednisone for relapsed/refractory multiple myeloma: a multicenter phase 1/2 open-label study. Blood 2013; 122: 2799–2806.

    Article  CAS  PubMed  Google Scholar 

  188. Jakubowiak AJ, Benson DM, Bensinger W, Siegel DS, Zimmerman TM, Mohrbacher A et al. Phase I trial of anti-CS1 monoclonal antibody elotuzumab in combination with bortezomib in the treatment of relapsed/refractory multiple myeloma. J Clin Oncol 2012; 30: 1960–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Berdeja JG, Hernandez-Ilizaliturri F, Chanan-Khan A, Patel M, Kelly KR, Running KL et al. Phase I study of lorvotuzumab mertansine (LM, IMGN901) in combination with lenalidomide (Len) and dexamethasone (Dex) in patients with CD56-positive relapsed or relapsed/refractory multiple myeloma (MM). ASH Ann Meet Abstr 2012; 120: 728.

    Google Scholar 

  190. Agura E, Niesvizky R, Matous J, Munshi N, Hussein M, Parameswaran RV et al. Dacetuzumab (SGN-40), lenalidomide, and weekly dexamethasone in relapsed or refractory multiple myeloma: multiple responses observed in a phase 1b study. ASH Ann Meet Abstr 2009; 114: 2870.

    Google Scholar 

  191. Richardson P, Weber D, Mitsiades CS, Dimopoulos MA, Harousseau J-L, Houp J et al. A phase I study of vorinostat, lenalidomide, and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma: excellent tolerability and promising activity in a heavily pretreated population. ASH Ann Meet Abstr 2010; 116: 1951.

    Google Scholar 

  192. Richter JR, Bilotti E, McBride L, Schmidt L, Gao Z, Tufail M et al. Salvage therapy with vorinostat, lenalidomide, and dexamethasone (ZRD) in lenalidomide/dexamethasone relapsed/refractory multiple myeloma. ASH Ann Meet Abstr 2011; 118: 3986.

    Google Scholar 

  193. Mateos M, Spencer A, Taylor K, Lonial S, De La Rubia J, Facon T et al. Phase Ib study of oral panobinostat (LBH589) plus lenalidomide (LEN) plus dexamethasone (DEX) in patients (Pts) with relapsed (Rel) or Rel and refractory (Ref) multiple myeloma (MM). ASCO Meet Abstr 2010; 28 (15_suppl): 8030.

    Google Scholar 

  194. Voorhees PM, Gasparetto C, Osman K, Richards KL, Ferraro M, Garcia R et al. Vorinostat in combination with pegylated liposomal doxorubicin (PLD) and bortezomib (B) in patients with relapsed/refractory multiple myeloma (R/R MM): final results of a phase I study. ASH Ann Meet Abstr 2011; 118: 3985.

    Google Scholar 

  195. Siegel D, Bilotti E, McBride L, Richardson P, Schmidt L, Gao Z et al. Vorinostat overcomes resistance in patients with multiple myeloma refractory to bortezomib, lenalidomide and dexamethasone. Haematol IMW Meet Abstr 2011; 96 (Supp-1): P-216.

    Google Scholar 

  196. Kaufman JL, Shah JJ, Laubach JP, Mitchell AR, Sharp C, Lewis C et al. Lenalidomide, bortezomib, and dexamethasone (RVD) in combination with vorinostat as front-line therapy for patients with multiple myeloma (MM): results of a phase 1 study. ASH Ann Meet Abstr 2012; 120: 336.

    Google Scholar 

  197. Berenson JR, Yellin O, Kazamel T, Boccia RV, Matous J, Dressler K et al. A phase I/II study of oral melphalan (Mel) combined with panobinostat (Pan) for patients with relapsed or refractory (R/R) multiple myeloma (MM). Haematol IMW Meet Abstr 2011; 96 (Supp-1): P-206.

    Google Scholar 

  198. Offidani M, Cavallo F, Polloni C, Liberati M, Ballanti S, Pulini S et al. Phase I-II study of melphalan, thalidomide and prednisone (MPT) combined with oral panobinostat in patients with relapsed/refractory MM. Haematol IMW Meet Abstr 2011; 96 (Supp-1): P-191.

    Google Scholar 

  199. Niesvizky R, Lentzsch S, Badros AZ, Chanan-Khan AA, Singhal SB, Zonder JA et al. A phase I study of PD 0332991: complete CDK4/6 inhibition and tumor response in sequential combination with bortezomib and dexamethasone for relapsed and refractory multiple myeloma. ASH Ann Meet Abstr 2010; 116: 860.

    Google Scholar 

  200. Richardson PG, Chanan-Khan AA, Alsina M, Albitar M, Berman D, Messina M et al. Tanespimycin monotherapy in relapsed multiple myeloma: results of a phase 1 dose-escalation study. Br J Haematol 2010; 150: 438–445.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E M Ocio.

Ethics declarations

Competing interests

EMO—consultancy: Onyx, Bristol Myers Squibb, Array Pharmaceuticals; research funding: Celgene, Onyx, Pharmamar, Array Pharmaceuticals. PGR—consultancy: Celgene, Millennium Takeda, Johnson & Johnson, Novartis, Bristol Myer Squibb; research funding: Celgene and Millenium. SVR—no conflicts to disclose. AP—consultancy and honoraria: Amgen, Bristol Myers Squibb, Celgene, Janssen-Cilag, Millennium, ONYX. MVM—consultancy: Janssen-Cilag, Celgene, Millennium. RO—consultancy: Abbott Laboratories, Centocor Ortho Biotech, Cephalon, Millennium, Novartis, Onyx; research funding: Celgene, Johnson & Johnson, Millennium, Onyx. SK—consultancy: Millennium, Celgene, Onyx; research funding: Celgene, Millennium, Novartis, Celphalon, Sanofi, Onyx. SU—consultancy: Celgene; honoraria: Celgene, Onyx; research funding: Celgene, Onyx, Millennium. DR—honoraria: Amgen; research funding: Eli Lilly. RN—consultancy: Onyx, Millennium, Celgene; honoraria: Onyx, Millennium, Celgene; research funding: Onyx, Millennium, Celgene. HE—consultancy: Celgene, Janssen; honoraria: Celgene, Janssen; research funding: Celgene, Janssen. KCA—consultancy: Gilead, Sanofi-Aventis, Onyx, Celgene; stock ownership: Acetylon, Oncoprep. MAD—consultancy: Celgene, Ortho Biotech; honoraria: Celgene, Ortho Biotech; research funding: Celgene. HA—honoraria: Celgene, Janssen, Onyx. UHM—honoraria: Celgene, Janssen-Cilag. IT—No conflicts to disclose. GM—consultancy: Millennium Takeda, Neotype; honoraria: Millennium Takeda, Pfizer. RS—No conflicts to disclose. PM—consultancy: Celgene, Janssen; honoraria: Celgene, Janssen. PLB—honoraria: Onyx. CSC—No conflicts to disclose. JJL—honoraria: Celgene; research funding: Celgene, Janssen-Cilag. JS—research funding: Janssen-Cilag, Celgene, Onyx. AR—consultancy: Celgene; research funding: Celgene, Bristol Myers Squibb, Millennium, Astra Zeneca, Onyx. JM—research funding: Celgene, Onyx, Sanofi. SZ—research funding: Celgene, Janssen-Cilag, Millennium. SL—consultancy: Celgene, Millennium, Novartis, Bristol Myers Squibb, Onyx, Janssen-Cilag. RC—consultancy: Millennium; research funding: Millennium, Prothena Biotech. WJC—honoraria: Janssen, Celgene, Novartis; research funding: Celgene, Roche. PM—consultancy: Celgene, Janssen, Millennium; honoraria: Celgene, Janssen. PS—research funding: Janssen-Cilag, Celgene, Onyx. HL—honoraria: Celgene, Mundi Pharma, Janssen-Cilag; research funding: Celgene, Mundi Pharma, Janssen-Cilag. BD—honoraria: Celgene Corporation, Onyx Pharmaceutical, Millennium Pharmaceutical, The Takeda Company. JFSM—consultancy and honoraria: Janssen-Cilag, Millennium, Celgene, Onyx, Novartis, Bristol Myers Squibb.

Appendix

Appendix

The International Myeloma Working Group

  1. 1

    Niels Abildgaard, Syddansk Universitet, Odense, Denmark.

  2. 2

    Rafat Abonour, Indiana University School of Medicine, Indianapolis, Indiana, USA.

  3. 3

    Ray Alexanian, MD Anderson, Houston, TX, USA.

  4. 4

    Melissa Alsina, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

  5. 5

    Kenneth C. Anderson, DFCI, Boston, MA, USA.

  6. 6

    Michel Attal, Purpan Hospital, Toulouse, France.

  7. 7

    Hervé Avet-Loiseau, Institute de Biologie, Nantes, France.

  8. 8

    Ashraf Badros, University of Maryland, Baltimore, MD, USA.

  9. 9

    Dalsu Baris, National Cancer Institute, Bethesda, MD, USA.

  10. 10

    Bart Barlogie, M.I.R.T. UAMS, Little Rock, AR, USA.

  11. 11

    Régis Bataille, Institute de Biologie, Nantes, France.

  12. 12

    Meral Beksaç, Ankara University, Ankara, Turkey.

  13. 13

    Andrew Belch, Cross Cancer Institute, Edmonton, AB, Canada.

  14. 14

    Dina Ben-Yehuda, Hadassah University Hospital, Hadassah, Israel.

  15. 15

    Bill Bensinger, Fred Hutchinson Cancer Center, Seattle, WA, USA.

  16. 16

    P. Leif Bergsagel, Mayo Clinic Scottsdale, Scottsdale, AZ, USA.

  17. 17

    Jenny Bird, Bristol Haematology and Oncology Center, Bristol, UK.

  18. 18

    Joan Bladé, Hospital Clinica, Barcelona, Spain.

  19. 19

    Mario Boccadoro, University of Torino, Torino, Italy.

  20. 20

    Jo Caers, Centre Hospitalier Universitaire de Liège, Liège, Belgium.

  21. 21

    Michele Cavo, Universita di Bologna, Bologna, Italy.

  22. 22

    Asher Chanan-Khan, Mayo Clinic, Jacksonville, FL, USA.

  23. 23

    Wen Ming Chen, MM Research Center of Beijing, Beijing, China.

  24. 24

    Marta Chesi, Mayo Clinic Scottsdale, Scottsdale, AZ, USA.

  25. 25

    Tony Child, Leeds General Hospital, Leeds, UK.

  26. 26

    James Chim, Department of Medicine, Queen Mary Hospital, Hong Kong.

  27. 27

    Wee-Joo Chng, National University Health System, Singapore.

  28. 28

    Ray Comenzo, Tufts Medical School, Boston, MA, USA.

  29. 29

    John Crowley, Cancer Research and Biostatistics, Seattle, WA, USA.

  30. 30

    William Dalton, H. Lee Moffitt, Tampa, FL, USA.

  31. 31

    Faith Davies, Royal Marsden Hospital, London, UK.

  32. 32

    Javier de la Rubia, Hospital Universitario La Fe, Valencia, Spain.

  33. 33

    Cármino de Souza, Univeridade de Campinas, Caminas, Brazil.

  34. 34

    Michel Delforge, University Hospital Gasthuisberg, Leuven, Belgium.

  35. 35

    Meletios Dimopoulos, University of Athens School of Medicine, Athens, Greece.

  36. 36

    Angela Dispenzieri, Mayo Clinic, Rochester, MN, USA.

  37. 37

    Johannes Drach, University of Vienna, Vienna, Austria.

  38. 38

    Matthew Drake, Mayo Clinic Rochester, Rochester, MN, USA.

  39. 39

    Brian G.M. Durie, Cedars-Sinai Samuel Oschin Cancer Center, Los Angeles, CA, USA.

  40. 40

    Hermann Einsele, Universitätsklinik Würzburg, Würzburg, Germany.

  41. 41

    Theirry Facon, Centre Hospitalier Regional Universitaire de Lille, Lille, France.

  42. 42

    Dorotea Fantl, Socieded Argentinade Hematolgia, Buenos Aires, Argentina.

  43. 43

    Jean-Paul Fermand, Hopitaux de Paris, Paris, France.

  44. 44

    Carlos Fernández de Larrea, Hospital Clínic de Barcelona, Barcelona, Spain.

  45. 45

    Rafael Fonseca, Mayo Clinic Arizona, Scottsdale, AZ, USA.

  46. 46

    Gösta Gahrton, Karolinska Institute for Medicine, Huddinge, Sweden.

  47. 47

    Ramón García-Sanz, University Hospital of Salamanca, Salamanca, Spain.

  48. 48

    Christina Gasparetto, Duke University Medical Center, Durham, NC, USA.

  49. 49

    Morie Gertz, Mayo Clinic, Rochester, MN, USA.

  50. 50

    Irene Ghobrial, Dana-Farber Cancer Institute, Boston, MA, USA.

  51. 51

    John Gibson, Royal Prince Alfred Hospital, Sydney, NSW, Australia.

  52. 52

    Peter Gimsing, University of Copenhagen, Copenhagen, Denmark.

  53. 53

    Sergio Giralt, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

  54. 54

    Hartmut Goldschmidt, University Hospital Heidelberg, Heidelberg, Germany.

  55. 55

    Philip Greipp, Mayo Clinic, Rochester, MN, USA.

  56. 56

    Roman Hajek, Brno University, Brno, Czech Republic.

  57. 57

    Izhar Hardan, Tel Aviv University, Tel Aviv, Israel.

  58. 58

    Parameswaran Hari, Medical College of Wisconsin, Milwaukee, WI, USA.

  59. 59

    Hiroyuki Hata, Kumamoto University Hospital, Kumamoto, Japan.

  60. 60

    Yutaka Hattori, Keio University School of Medicine, Tokyo, Japan.

  61. 61

    Tom Heffner, Emory University, Atlanta, GA, USA.

  62. 62

    Jens Hillengass, University of Heidelberg, Heidelberg, Germany.

  63. 63

    Joy Ho, Royal Prince Alfred Hospital, Sydney, NSW, Australia.

  64. 64

    Antje Hoering, Cancer Research and Biostatistics, Seattle, WA, USA.

  65. 65

    Jian Hou, Shanghai Chang Zheng Hospital, Shanghai, China.

  66. 66

    Vania Hungria, Clinica San Germano, Sao Paolo, Brazil.

  67. 67

    Shinsuke Ida, Nagoya City University Medical School, Nagoya, Japan.

  68. 68

    Andrzej J. Jakubowiak, University of Chicago, Chicago, IL, USA.

  69. 69

    Peter Jacobs, Constantiaberg Medi-Clinic, Plumstead, South Africa.

  70. 70

    Sundar Jagannath, Mt. Sinai Cancer Institute, New York, NY, USA.

  71. 71

    Hans Johnsen, Aalborg Hospital Science and Innovation Center, Aalborg, Denmark.

  72. 72

    Douglas Joshua, Royal Prince Alfred Hospital, Sydney, NSW, Australia.

  73. 73

    Artur Jurczyszyn, The Myeloma Treatment Foundation, Poland.

  74. 74

    Efstathios Kastritis, University of Athens, Athens, Greece.

  75. 75

    Jonathan Kaufman, Emory Clinic, Atlanta, GA, USA.

  76. 76

    Michio Kawano, Yamaguchi University, Ube, Japan.

  77. 77

    Eva Kovacs, Cancer Immunology Research-Life, Birsfelden, Switzerland.

  78. 78

    Amrita Krishnan, City of Hope, Duarte, CA, USA.

  79. 79

    Sigurdur Kristinsson, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden.

  80. 80

    Nicolaus Kröger, University Hospital Hamburg, Hamburg, Germany.

  81. 81

    Shaji Kumar, Department of Hematology, Mayo Clinic, Rochester, MN, USA.

  82. 82

    Robert A. Kyle, Department of Laboratory Med. and Pathology, Mayo Clinic, Rochester, MN, USA.

  83. 83

    Chara Kyriacou, Northwick Park Hospital, London, UK.

  84. 84

    Martha Lacy, Mayo Clinic Rochester, Rochester, MN, USA.

  85. 85

    Juan José Lahuerta, Grupo Español di Mieloma, Hospital Universitario 12 de Octubre, Madrid, Spain.

  86. 86

    Ola Landgren, National Cancer Institute, Bethesda, MD, USA.

  87. 87

    Jacob Laubach, Dana-Farber Cancer Institute, Boston, MA, USA.

  88. 88

    Garderet Laurent, Hôpital Saint Antoine, Paris, France.

  89. 89

    Fernando Leal da Costa, Instituto Portugues De Oncologia, Lisbon, Portugal.

  90. 90

    Jae Hoon Lee, Gachon University Gil Hospital, Incheon, Korea.

  91. 91

    Merav Leiba, Sheba Medical Center, Tel Hashomer, Israel.

  92. 92

    Xavier LeLeu, Hospital Huriez, CHRU Lille, France.

  93. 93

    Suzanne Lentzsch, Columbia University, New York, NY, USA.

  94. 94

    Henk Lokhorst, University Medical CenterUtrecht, Utrecht, The Netherlands.

  95. 95

    Sagar Lonial, Emory University Medical School, Atlanta, GA, USA.

  96. 96

    Heinz Ludwig, Wilhelminenspital Der Stat Wien, Vienna, Austria.

  97. 97

    Anuj Mahindra, Dana-Farber Cancer Institute, Massachusetts General Hospital, Boston, MA, USA.

  98. 98

    Angelo Maiolino, Rua fonte da Saudade, Rio de Janeiro, Brazil.

  99. 99

    María-Marivi Mateos, University Hospital of Salamanca-IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.

  100. 100

    Amitabha Mazumder, NYU Comprehensive Cancer Center, New York, NY, USA.

  101. 101

    Philip McCarthy, Roswell Park Cancer Institute, Buffalo, NY, USA.

  102. 102

    Jayesh Mehta, Northwestern University, Chicago, IL, USA.

  103. 103

    Ulf-Henrik Mellqvist, Sahlgrenska University Hospital, Gothenburg, Sweden.

  104. 104

    GiamPaolo Merlini, University of Pavia, Pavia, Italy.

  105. 105

    Joseph Mikhael, Mayo Clinic Arizona, Scottsdale, AZ, USA.

  106. 106

    Philippe Moreau, University Hospital, Nantes, France.

  107. 107

    Gareth Morgan, Royal Marsden Hospital, London, UK.

  108. 108

    Nikhil Munshi, Diane Farber Cancer Institute, Boston, MA, USA.

  109. 109

    Hareth Nahi, Karolinska University Hospital, Stockholm, Sweden.

  110. 110

    Ruben Niesvizky, Weill Cornell Medical College, New York, NY, USA.

  111. 111

    Amara Nouel, Hospital Rutz y Paez, Bolivar, Venezuela.

  112. 112

    Yana Novis, Hospital Sírio Libanês, Bela Vista, Brazil.

  113. 113

    Enrique Ocio, University Hospital of Salamanca-IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.

  114. 114

    Robert Orlowski, MD Anderson Cancer Center, Houston, TX, USA.

  115. 115

    Antonio Palumbo, Cathedra Ematologia, Torino, Italy.

  116. 116

    Santiago Pavlovsky, Fundaleu, Buenos Aires, Argentina.

  117. 117

    Linda Pilarski, University of Alberta, Edmonton, AB, Canada.

  118. 118

    Raymond Powles, Leukemia & Myeloma, Wimbledon, UK.

  119. 119

    Noopur Raje, Massachusetts General Hospital, Boston, MA, USA.

  120. 120

    S. Vincent Rajkumar, Mayo Clinic, Rochester, MN, USA.

  121. 121

    Donna Reece, Princess Margaret Hospital, Toronto, ON, Canada.

  122. 122

    Tony Reiman, Saint John Regional Hospital, Saint John, NB, Canada.

  123. 123

    Paul G. Richardson, Dana Farber Cancer Institute, Boston, MA, USA.

  124. 124

    Angelina Rodríguez Morales, Bonco Metro Politano de Sangre, Caracas, Venezuela.

  125. 125

    Kenneth R. Romeril, Wellington Hospital, Wellington, New Zealand.

  126. 126

    David Roodman, Indiana University, Indianapolis, IN, USA

  127. 127

    Laura Rosiñol, Hospital Clinic, Barcelona, Spain.

  128. 128

    Murielle Roussel, University of Toulouse, Toulouse, France.

  129. 129

    Stephen Russell, Mayo Clinic, Rochester, MN, USA.

  130. 130

    Jesús San Miguel, University Hospital of Salamanca-IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain.

  131. 131

    Rik Schots, Universitair Ziekenhuis Brussel, Brussels, Belgium.

  132. 132

    Sabina Sevcikova, Masaryk University, Brno, Czech Republic.

  133. 133

    Orhan Sezer, Universität Hamburg, Hamburg, Germany.

  134. 134

    Jatin J. Shah, MD Anderson Cancer Institute, Houston, TX, USA.

  135. 135

    John Shaughnessy, M.I.R.T. UAMS, Little Rock, AR, USA.

  136. 136

    Kazuyuki Shimizu, Nagoya City Midori General Hospital, Nagoya, Japan.

  137. 137

    Chaim Shustik, McGill University, Montreal, QC, Canada.

  138. 138

    David Siegel, Hackensack, Cancer Center, Hackensack, NJ, USA.

  139. 139

    Seema Singhal, Northwestern University, Chicago, IL, USA.

  140. 140

    Pieter Sonneveld, Erasmus MC, Rotterdam, The Netherlands.

  141. 141

    Andrew Spencer, The Alfred Hospital, Melbourne, VIC, Australia.

  142. 142

    Edward Stadtmauer, University of Pennsylvania, Philadelphia, PA, USA.

  143. 143

    Keith Stewart, Mayo Clinic Arizona, Scottsdale, AZ, USA.

  144. 144

    Evangelos Terpos, University of Athens School of Medicine, Athens, Greece.

  145. 145

    Patrizia Tosi, Italian Cooperative Group, Istituto di Ematologia Seragnoli, Bologna, Italy.

  146. 146

    Guido Tricot, Huntsman Cancer Institute, Salt Lake City, UT, USA.

  147. 147

    Ingemar Turesson, SKANE University Hospital, Malmo, Sweden.

  148. 148

    Saad Usmani, M.I.R.T UAMS, Little Rock, AR, USA.

  149. 149

    Ben Van Camp, Vrije Universiteit Brussels, Brussels, Belgium.

  150. 150

    Brian Van Ness, University of Minnesota, Minneapolis, MN, USA.

  151. 151

    Ivan Van Riet, Brussels Vrija University, Brussels, Belgium.

  152. 152

    Isabelle Vande Broek, Vrije Universiteit Brussels, Brussels, Belgium.

  153. 153

    Karin Vanderkerken, Vrije University Brussels VUB, Brussels, Belgium.

  154. 154

    Robert Vescio, Cedars-Sinai Cancer Center, Los Angeles, CA, USA.

  155. 155

    David Vesole, Hackensack Cancer Center, Hackensack, NJ, USA.

  156. 156

    Peter Voorhees, University of North Carolina, Chapel Hill, NC, USA.

  157. 157

    Anders Waage, University Hospital, NSMG, Trondheim, Norway.

  158. 158

    Michael Wang, MD Anderson, Houston, TX, USA.

  159. 159

    Donna Weber, MD Anderson, Houston, TX, USA.

  160. 160

    Jan Westin, Sahlgrenska University Hospital, Gothenburg, Sweden.

  161. 161

    Keith Wheatley, University of Birmingham, Birmingham, UK.

  162. 162

    Elena Zamagni, University of Bologna, Bologna, Italy.

  163. 163

    Jeffrey Zonder, Karmanos Cancer Institute, Detroit, MI, USA.

  164. 164

    Sonja Zweegman, VU University Medical Center, Amsterdam, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocio, E., Richardson, P., Rajkumar, S. et al. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia 28, 525–542 (2014). https://doi.org/10.1038/leu.2013.350

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.350

Keywords

This article is cited by

Search

Quick links