Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function

Abstract

Left ventricular remodeling is a major cause of progressive heart failure and death after myocardial infarction. Although neoangiogenesis within the infarcted tissue is an integral component of the remodeling process, the capillary network is unable to support the greater demands of the hypertrophied myocardium, resulting in progressive loss of viable tissue, infarct extension and fibrous replacement. Here we show that bone marrow from adult humans contains endothelial precursors with phenotypic and functional characteristics of embryonic hemangioblasts, and that these can be used to directly induce new blood vessel formation in the infarct-bed (vasculogenesis) and proliferation of preexisting vasculature (angiogenesis) after experimental myocardial infarction. The neoangiogenesis resulted in decreased apoptosis of hypertrophied myocytes in the peri-infarct region, long-term salvage and survival of viable myocardium, reduction in collagen deposition and sustained improvement in cardiac function. The use of cytokine-mobilized autologous human bone-marrow–derived angioblasts for revascularization of infarcted myocardium (alone or in conjunction with currently used therapies) has the potential to significantly reduce morbidity and mortality associated with left ventricular remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: G-CSF mobilizes into the circulation a human bone-marrow–derived population which differentiates into endothelial cells.
Figure 2: Injection of G-CSF–mobilized human CD34+ cells into rats with acute myocardial infarction induces neoangiogenesis involving endothelium of both human and rat origin at 2 wk post-LAD ligation.
Figure 3: Injection of G-CSF–mobilized human CD34+ cells into rats with acute infarction improves myocardial function.
Figure 4: Representative echocardiographic examples of rats undergoing LAD ligation and subsequently receiving saline (control) or human CD34+ cells intravenously.
Figure 5: Neoangiogenesis and improvement in myocardial function is dependent on angioblast population within human CD34+/CD117Bright subset.
Figure 6: Neoangiogenesis accompanying injection of human CD34+ lineage cells protects hypertrophied myocardial cells against apoptosis.
Figure 7: Injection of G-CSF–mobilized human CD34+ cells into rats with acute infarction modifies the process of myocardial remodeling.

Similar content being viewed by others

References

  1. Mahon, N.G. et al. Hospital mortality of acute myocardial infarction in the thrombolytic era. Heart 81, 478–482 (1999).

    Article  CAS  Google Scholar 

  2. Pfeffer, J.M., Pfeffer, M.A., Fletcher, P.J. & Braunwald, E. Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 260, H1406–1414 (1991).

    CAS  Google Scholar 

  3. White, H.D. et al. Left ventricular end systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76, 44–51 (1987).

    Article  CAS  Google Scholar 

  4. Colucci, W.S. Molecular and cellular mechanisms of myocardial failure. Am. J. Cardiol. 80, 15L–25L (1997).

    Article  CAS  Google Scholar 

  5. Ravichandran, L.V. & Puvanakrishnan, R. In vivo labeling studies on the biosynthesis and degradation of collagen in experimental myocardial myocardial infarction. Biochem. Intl. 24, 405–414 (1991).

    CAS  Google Scholar 

  6. Agocha, A., Lee, H.W. & Eghali-Webb, M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of TGF-β, thyroid hormone, angiotensis II and basic fibroblast growth factor. J. Mol. Cell. Cardiol. 29, 2233–2244H (1997).

    Article  CAS  Google Scholar 

  7. Tomita, S. et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100, 247–256 (1999).

    Article  Google Scholar 

  8. Liechty, K.W. et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Med. 6, 1282–1286 (2000).

    Article  CAS  Google Scholar 

  9. Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  10. Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103, 697–705 (1999).

    Article  CAS  Google Scholar 

  11. Nelissen-Vrancken, H., Debets, J., Snoeckx, L., Daemen, M. & Smits, J. Time-related normalization of maximal coronary flow in isolated perfused hearts of rats with myocardial infarction. Circulation 93, 349–355 (1996).

    Article  CAS  Google Scholar 

  12. Kalkman, E.A.J. et al. Determinants of coronary reserve in rats subjected to coronary artery ligation or aortic banding. Cardiovasc. Res. 32, 1088–1095 (1996).

    Article  CAS  Google Scholar 

  13. Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature Med. 5, 1135–1142 (1999).

    Article  CAS  Google Scholar 

  14. Hochman, J.S. & Choo, H. Limitation of myocardial infarct expansion by reperfusion independent of myocardial salvage. Circulation 75, 299–306 (1987).

    Article  CAS  Google Scholar 

  15. White, H.D. et al. Long-term prognostic importance of patency of the infarct-related coronary artery after thrombolytic therapy for myocardial infarction. Circulation 89, 61–67 (1994).

    Article  CAS  Google Scholar 

  16. Nidorf, S.M., Siu, S.C., Galambos, G., Weyman, A.E. & Picard, M.H. Benefit of late coronary reperfusion on ventricular morphology and function after myocardial infarction. J. Am. Coll. Cardiol. 20, 307–313 (1992).

    Article  Google Scholar 

  17. Folkman, J. Therapeutic angiogenesis in ischemic limbs. Circulation 97, 1108–10 (1998).

    Article  CAS  Google Scholar 

  18. Asahara, T. et al. Isolation of putative progenitor cells for endothelial angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  Google Scholar 

  19. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med. 5, 434–438 (1999).

    Article  CAS  Google Scholar 

  20. Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427 (2000).

    Article  CAS  Google Scholar 

  21. Rafii, S. et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion. Blood 84, 10–19 (1994).

    CAS  PubMed  Google Scholar 

  22. Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367 (1998).

    CAS  PubMed  Google Scholar 

  23. Lin, Y., Weisdorf, D.J., Solovey, A. & Hebbel, R.P. Origins of circulating endothelial cells and endothelial outgrowth from blood. J. Clin. Invest. 105, 71–77 (2000).

    Article  CAS  Google Scholar 

  24. Tavian, M. et al. Aorta-associated CD34 hematopoietic cells in the early human embryo. Blood 87, 67–72 (1996).

    CAS  PubMed  Google Scholar 

  25. Jaffredo, T., Gautier, R., Eichmann, A. & Dieterlen-Lievre, F. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. Development 125, 4575–4583 (1998).

    Google Scholar 

  26. Kennedy, M. et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386, 488–493 (1997).

    Article  CAS  Google Scholar 

  27. Choi, K., Kennedy, M., Kazarov, A., Papadimitriou, N. & Keller, G. A common precursor for hematopoietic and endothelial cells. Development 125, 725–732 (1998).

    CAS  PubMed  Google Scholar 

  28. Elefanty, A.G., Robb, L., Birner, R. & Begley, C.G. Hematopoietic-specific genes are not induced during in vitro differentiation of scl-null embryonic stem cells. Blood 90, 1435–1447 (1997).

    CAS  PubMed  Google Scholar 

  29. Labastie, M.C., Cortes, F., Romeo, P.H., Dulac, C. & Peault, B. Molecular identity of hematopoietic precursor cells emerging in the human embryo. Blood 92, 3624–3635 (1998).

    CAS  PubMed  Google Scholar 

  30. Tsai, F.Y. et al. An early hematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–225 (1994).

    Article  CAS  Google Scholar 

  31. Ogawa, M. et al. Expression of α4-integrin defines the earliest precursor of hematopoietic cell lineage diverged from endothelial cells. Blood 93, 1168–1177 (1999).

    CAS  PubMed  Google Scholar 

  32. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95, 952–958 (2000).

    CAS  PubMed  Google Scholar 

  33. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    Article  CAS  Google Scholar 

  34. Olivetti, G., Capasso, J.M., Meggs, L.G., Sonnenblick, E.H. & Anversa, P. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ. Res. 68, 856–869 (1991).

    Article  CAS  Google Scholar 

  35. Braunwald, E. & Pfeffer, M.A. Ventricular enlargement and remodelling following acute myocardial infarction: mechanisms and management. Am. J. Cardiol. 68, 1–6D (1991).

    Article  Google Scholar 

  36. Narula, J. et al. Apoptosis in myocytes in end-stage heart failure. N. Engl. J. Med. 335, 1182–1189 (1996).

    Article  CAS  Google Scholar 

  37. Cheng, W. et al. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp. Cell. Res. 226, 316–327 (1996).

    Article  CAS  Google Scholar 

  38. Hart, P.H. et al. Activation of human monocytes by granulocyte-macrophage colony-stimulating factor: increased urokinase-type plasminogen activator activity. Blood 77, 841–848 (1991).

    CAS  PubMed  Google Scholar 

  39. Stacey, K.J. et al. Regulation of urokinase-type plasminogen activator gene transcription by macrophage colony-stimulating factor. Mol. Cell. Biol. 15, 3430–3441 (1995).

    Article  CAS  Google Scholar 

  40. Pei, X.H. et al. G-CSF increases secretion of urokinase-type plasminogen activator by human lung cancer cells. Clin. Exp. Metastasis 16, 551–558 (1998).

    Article  CAS  Google Scholar 

  41. Dorfman, D.M., Wilson, D.B., Bruns, G.A. & Orkin, S.H. Human transcription factor GATA-2. Evidence for regulation of preproendothelin-1 gene expression in endothelial cells. J. Biol. Chem. 267, 1279–1285 (1992).

    CAS  PubMed  Google Scholar 

  42. Ito, H. et al. Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J. Clin. Invest. 92, 398–403 (1993).

    Article  CAS  Google Scholar 

  43. Kalkman, E.A.J., van Haren, P., Saxena, P.R. & Schoemaker, R.G. Regionally different vascular response to vasoactive substances in the remodeled infarcted rat heart; aberrant vasculature in the infarct scar. J. Mol. Cell. Cardiol. 29, 1487–1497 (1997).

    Article  CAS  Google Scholar 

  44. McEwan, P.E., Gray, G.A., Sherry, L., Webb, D.J. & Kenyon, C.J. Differential effects of angiotensin II on cardiac cell proliferation and intramyocardial perivascular fibrosis in vivo. Circulation 98, 2765–2773 (1998).

    Article  CAS  Google Scholar 

  45. Kawano, H. et al. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation 101, 1130–1137 (2000).

    Article  CAS  Google Scholar 

  46. Pfeffer, M.A. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE investigators. N. Engl. J. Med. 327, 669–677 (1992).

    Article  CAS  Google Scholar 

  47. The SOLVD investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N. Engl. J. Med. 325, 293–302 (1991).

  48. Pitt, B. et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 349, 747–752 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Itescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocher, A., Schuster, M., Szabolcs, M. et al. Neovascularization of ischemic myocardium by human bone-marrow–derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7, 430–436 (2001). https://doi.org/10.1038/86498

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/86498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing