Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Domain specificity in face perception

Is face perception carried out by modules specialized only for processing faces? Or are faces perceived by domain-general mechanisms that can also operate on non-face stimuli? Considerable evidence supports the domain-specific view.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Fodor, J. Modularity of Mind (MIT Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  2. Hirschfeld, L. A. & Gelman, S. Mapping the Mind: Domain Specificity in Cognition and Culture (Cambridge Univ. Press, Cambridge, UK, 1994).

    Book  Google Scholar 

  3. Yin, R. K. Looking at upside-down faces. J. Exp. Psychol. 81, 141–145 (1969).

    Article  Google Scholar 

  4. Tanaka, J. W. & Farah, M. J. Parts and wholes in face recognition . Q. J. Exp. Psychol. A 46, 225– 245 (1993).

    Article  CAS  Google Scholar 

  5. Tanaka, J. W. & Sengco, J. A. Features and their configuration in face recognition. Mem. Cognit. 25, 583 –589 (1997).

    Article  CAS  Google Scholar 

  6. Young, A. W., Hellawell, D. & Hay, D. C. Configurational information in face perception. Perception 16, 747–759 ( 1987).

    Article  CAS  Google Scholar 

  7. Moscovitch, M. &. Moscovitch, D. A. Superface inversion effects for isolated internal or external features, and for fractured faces. Cogn. Neuropsychol. 17, 201–219 (2000).

    Article  CAS  Google Scholar 

  8. Bodamer, J. Die prosopagnosie. Archiv für Psychiatrie und Nervenkrankheiten 179, 6–53 ( 1947).

    Article  Google Scholar 

  9. Moscovitch, M., Winocur, G. & Behrmann, M. What is special about face recognition? nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition . J. Cognit. Neurosci. 9, 555– 604 (1997).

    Article  CAS  Google Scholar 

  10. Haxby, J. V. et al. The functional organization of human extrastriate cortex: A PET-fCBF study of selective attention to faces and locations. J. Neurosci. 14, 6336–6353 (1994).

    Article  CAS  Google Scholar 

  11. Sergent, J., Ohta, S. & MacDonald, B. Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain 115, 15–36 (1992).

    Article  Google Scholar 

  12. Puce, A., Allison, T., Asgari, M., Gore, J. C. & McCarthy, G. Differential sensitivity of human visual cortex to faces, letter strings, and textures: a functional magnetic resonance imaging study . J. Neurosci. 16, 5205– 5215 (1996).

    Article  CAS  Google Scholar 

  13. McCarthy, G., Puce, A., Gore, J. & Allison, T. Face-specific processing in the human fusiform gyrus. J. Cognit. Neurosci. 9, 605–610 (1996).

    Article  Google Scholar 

  14. Kanwisher, N., McDermott, J. & Chun, M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  Google Scholar 

  15. Kanwisher, N. Stanley, D. & Harris, A. The fusiform face area is selective for faces not animals . Neuroreport 10, 183–187 (1999).

    Article  CAS  Google Scholar 

  16. Chao, L. L., Martin, A. & Haxby, J. V. Are face-responsive regions selective only for faces? Neuroreport 10, 2945–2950 (1999).

    Article  CAS  Google Scholar 

  17. Tong, F., Nakayama, K., Moscovitch, M., Weinrib, O. & Kanwisher, N. Response properties of the human fusiform face area. Cognit. Neuropsychol. 17, 257–279 (2000).

    Article  CAS  Google Scholar 

  18. Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perceptions in humans. J. Cognit. Neurosci. 8, 551– 565 (1996).

    Article  Google Scholar 

  19. Liu, J., Higuchi, M., Marantz, A. & Kanwisher, N. The selectivity of the occipitotemporal M170 for faces. Neuroreport 11, 337–341 (2000).

    Article  CAS  Google Scholar 

  20. Allison, T., Puce, A., Spencer, D. D. & McCarthy, G. Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cereb. Cortex, 9, 415–430 (1999).

    Article  CAS  Google Scholar 

  21. McCarthy, G., Puce, A., Belger, A. & Allison, T. Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex. Cereb. Cortex 9, 431–444 ( 1999).

    Article  CAS  Google Scholar 

  22. Puce, A., Allison, T. & McCarthy, G. Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials. Cereb. Cortex 9, 445–458 (1999).

    Article  CAS  Google Scholar 

  23. Diamond, R. & Carey, S. Why faces are and are not special: An effect of expertise. J. Exp. Psychol. Gen. 115, 107–117 (1986).

    Article  CAS  Google Scholar 

  24. Rhodes, G. & McLean, I. G. Distinctiveness and expertise effects with homogeneous stimuli: towards a model of configural coding. Perception 19, 773–794 ( 1990).

    Article  CAS  Google Scholar 

  25. Damasio, A. R., Damasio, H. & VanHoesen, G. W. Prosopagnosia: Anatomic basis and behavioral mechanisms . Neurology 32, 331–341 (1982).

    Article  CAS  Google Scholar 

  26. De Renzi, E. in Aspects of Face Processing (eds. Ellis, H. D., Jeeves, M. A., Newcombe, F. & Young, A. W.) 243–252 (Martinus Nijhoff, Dordrecht, 1986).

    Book  Google Scholar 

  27. Faust, C. Die zerebralen Herstorungen bei Hinterpauptsverletzungen und ihre Beurteilung (Thieme, Stuttgart, 1955).

    Google Scholar 

  28. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform ‘face area’ increases with expertise in recognizing novel objects . Nat. Neurosci. 2, 568– 573 (1999).

    Article  CAS  Google Scholar 

  29. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. Does visual subordinate-level categorization engage the functionally defined fusiform face area? Cognit. Neuropsychol. 17, 143–164 ( 2000).

    Article  CAS  Google Scholar 

  30. Gauthier, I., Skularski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition . Nat. Neurosci. 3, 191– 197 (2000).

    Article  CAS  Google Scholar 

  31. Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P. & Gore, J. C. Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Curr. Biol. 7, 645–651 ( 1997).

    Article  CAS  Google Scholar 

  32. Kanwisher, N., Downing, P., Epstein, R. & Kourtzi, Z. in The Handbook on Functional Neuroimaging (eds. Kingstone, A. & Cabeza, R.) (MIT Press, Cambridge, Massachusetts, in press).

  33. Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, Navigation, or Encoding? Neuron 23, 115–125 (1999).

    Article  CAS  Google Scholar 

  34. Wojciulik, E., Kanwisher, N. & Driver, J. Modulation of activity in the fusiform face area by covert attention: an fMRI study. J. Neurophysiol. 79 , 1574–1579 (1998).

    Article  CAS  Google Scholar 

  35. O'Craven, K. M., Downing, P. E. & Kanwisher, N. fMRI evidence for objects as the units of attentional selection. Nature 401, 584– 587 (1999).

    Article  CAS  Google Scholar 

  36. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598 –601 (1998).

    Article  CAS  Google Scholar 

  37. Logothetis, N. K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representations in the primate . Cereb. Cortex 3, 270– 288 (1995).

    Article  Google Scholar 

  38. Kobatake, E., Wang, G. & Tanaka, K. Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. J. Neurophysiol. 80, 324–330 (1998).

    Article  CAS  Google Scholar 

  39. Gross, C. G., Roche-Miranda, G. E. & Bender, D. B. Visual properties of neurons in the inferotemporal cortex of the macaque. J. Neurophysiol. 35, 96–111 (1972).

    Article  CAS  Google Scholar 

  40. Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    Article  CAS  Google Scholar 

  41. Gauthier, I. & Logothetis, N. Is face recognition not so unique after all? Cognit. Neuropsychol. 17, 143 –164 (2000).

    Article  CAS  Google Scholar 

  42. Henke, K., Schweinberger, S. R., Grigo, A., Klos, T. & Sommer, W. Specificity of face recognition: recognition of exemplars of non-face objects in prosopagnosia. Cortex 34, 289–296 ( 1998).

    Article  CAS  Google Scholar 

  43. McNeil, J. E. & Warrington, E. K. Prosopagnosia: a face-specific disorder. Q. J. Exp. Psychol. A 46, 1– 10 (1993).

    Article  CAS  Google Scholar 

  44. Sergent J. & Signoret, J. L. Varieties of functional deficits in prosopagnosia. Cereb. Cortex 2, 375– 388 (1992).

    Article  CAS  Google Scholar 

  45. Gauthier, I., Behrmann, M. & Tarr, M. Can face recognition really be dissociated from object recognition? J. Cogn. Neurosci. 11, 349– 371 (1999).

    Article  CAS  Google Scholar 

  46. Duchaine, B. Developmental prosopagnosia with normal configural processing. Neuroreport 17, 70–83 ( 2000).

    Google Scholar 

  47. Assal, G., Favre, C. & Anderes, J. P. Non-reconnaissance d'animaux familiers chez un paysan. Zoo-agnosie ou prosopagnosie pour les animaux. Rev. Neurol. (Paris) 140, 580–584 ( 1984).

    CAS  Google Scholar 

  48. Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7, 523–529 (1997).

    Article  CAS  Google Scholar 

  49. Logothetis, N. K., Pauls, J. & Poggio, T. Shape representation in the inferior temporal cortex of monkeys. Curr. Biol. 5, 552– 563 (1995).

    Article  CAS  Google Scholar 

  50. Jacobs, R. A. Computational studies of the development of functionally specialized neural modules. Trends Cogn. Sci. 3, 31– 38 (1999).

    Article  CAS  Google Scholar 

  51. Polk, T. A. & Farah, M. The neural development and organization of letter recognition: evidence from functional neuroimaging, computational modeling, and behavioral studies. Proc. Natl. Acad. Sci. USA 95, 847–852 (1998).

    Article  CAS  Google Scholar 

  52. Sperber, D. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds. Hirschfeld, L. A. & Gelman, S.) 37–67 (Cambridge Univ. Press, Cambridge, UK, 1994).

    Google Scholar 

  53. Pinker, S. How the Mind Works (Norton, New York, 1997).

  54. Wagner, A. D. Working memory contributions to human learning and remembering. Neuron 22, 19–22 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This commentary was supported by NIH grant 56037 to NK and has benefited greatly from conversations with and comments by numerous colleagues, including M. Behrmann, S. Carey, B. Duchaine, A. Harris, N. Logothetis, M. Moscovitch, K. Nakayama, M. Potter, P. Sinha, K. Tanaka, F. Tong and A. Wagner.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanwisher, N. Domain specificity in face perception. Nat Neurosci 3, 759–763 (2000). https://doi.org/10.1038/77664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing