Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The locus of attentional effects in texture segmentation

Abstract

Cuing covert spatial attention can increase spatial resolution. Here we pinpointed the specific locus of this effect using texture segmentation. At the level of visual cortex, texture segmentation theoretically involves passage of visual input through two layers of spatial linear filters separated by a pointwise nonlinearity. By manipulating the textures to differentially stimulate first- or second-order filters of various scales, we showed that the attentional effect consistently varied with the latter. These psychophysical results further support the hypothesis that attention increases resolution at the attended location and are consistent with an effect of attention at stages as early as the primary visual cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli and results of experiment 1.
Figure 2
Figure 3: Stimuli and results of experiment 2.
Figure 4: Stimuli and results of experiments 3 and 4.

Similar content being viewed by others

References

  1. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998).

    Article  CAS  Google Scholar 

  2. Yeshurun, Y. & Carrasco, M. Spatial attention improves performance in spatial resolution tasks. Vision Res. 39, 293–305 (1999).

    Article  CAS  Google Scholar 

  3. Carrasco, M. & Yeshurun, Y. The contribution of covert attention to the set-size and eccentricity effects in visual search. J. Exp. Psychol. Hum. Percept. Perform. 24, 673–692 (1998).

    Article  CAS  Google Scholar 

  4. Carrasco, M., Penpeci-Talgar, C. & Eckstein, M. Spatial covert attention increases contrast sensitivity along the CSF: Support for signal enhancement. Vision Res. 40, 1203–1215 (2000).

    Article  CAS  Google Scholar 

  5. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  Google Scholar 

  6. Kinchla, R. A. Attention. Annu. Rev. Psychol. 43, 711–742 (1992).

    Article  CAS  Google Scholar 

  7. Prinzmetal, W., Amiri, H., Allen, K. & Edwards T. Phenomenology of attention: 1. color, location, orientation, and spatial frequency. J. Exp. Psychol. Hum. Percept. Perform. 24, 1–22 (1998).

    Article  Google Scholar 

  8. Sperling G. & Dosher B. A. in Handbook of Perception and Human Performance Vol. 1 (eds. Boff, K. R., Kaufman, L. & Thomas, J. P.) 1–65 (Wiley, New York, 1986).

    Google Scholar 

  9. Shiu L. & Pashler, H. Spatial attention and vernier acuity. Vision Res. 35, 337–343 (1995).

    Article  CAS  Google Scholar 

  10. Balz, G. W. & Hock, H. S. The effect of attentional spread on spatial resolution. Vision Res. 37, 1499–1510 (1997).

    Article  CAS  Google Scholar 

  11. Morgan, M. J., Ward, R. M. & Castet, E. Visual search for a tilted target: Tests of spatial uncertainty models. Q. J. Exp. Psychol. A 51, 343–370 (1998).

    Article  CAS  Google Scholar 

  12. Tsal, Y. & Shalev, L. Inattention magnifies perceived length: The attentional receptive field hypothesis. J. Exp. Psychol. Hum. Percept. Perform. 22, 233–243 (1996).

    Article  CAS  Google Scholar 

  13. Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).

    Article  CAS  Google Scholar 

  14. Lu, Z. L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Res. 38, 1183–1198 (1998).

    Article  CAS  Google Scholar 

  15. Desimone R. & Duncan J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  16. Purpura, K. P., Victor, J. D. & Katz, E. Striate cortex extracts higher-order spatial correlations from visual textures. Proc. Natl. Acad. Sci. USA 91, 8482–8486 (1994).

    Article  CAS  Google Scholar 

  17. Lamme, V. A. F. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  Google Scholar 

  18. Lamme, V. A. F., Van Dijk, B. W. & Spekreijse, H. Organization of texture segregation processing in primate visual cortex. Vis. Neurosci. 10, 781–790 (1993).

    Article  CAS  Google Scholar 

  19. DeValois, R. L. & DeValois, K. K. Spatial Vision (Oxford Univ. Press, New York, 1988).

    Google Scholar 

  20. Graham, N. Visual Pattern Analyzers (Oxford Univ. Press, New York, 1989).

    Book  Google Scholar 

  21. Gurnsey, R., Pearson, P. & Day, D. Texture segmentation along the horizontal meridian: nonmonotonic changes in performance with eccentricity. J. Exp. Psychol. Hum. Percept. Perform. 22, 738–757 (1996).

    Article  CAS  Google Scholar 

  22. Kehrer, L. Central performance drop on perceptual segregation tasks. Spat. Vis. 4, 45–62 (1989).

    Article  CAS  Google Scholar 

  23. Kehrer, L. The central performance drop in texture segmentation: a simulation based on a spatial filter model. Biol. Cybern. 77, 297–305 (1997).

    Article  Google Scholar 

  24. Bergen, J. R. & Landy, M. S. in Computational Models of Visual Processing (eds. Landy, M. S. & Movshon, J. A.) 253–271 (MIT Press, Cambridge, Massachusetts, 1991).

    Google Scholar 

  25. Sutter, A., Beck, J. & Graham, N. Contrast and spatial variables in texture segregation: testing a simple spatial-frequency channels model. Percept. Psychophys. 46, 312–332 (1989).

    Article  CAS  Google Scholar 

  26. Graham, N., Beck, J. & Sutter, A. Nonlinear processes in spatial-frequency channel models of perceived texture segregation: Effects of sign and amount of contrast. Vision Res. 32, 719–743 (1992).

    Article  CAS  Google Scholar 

  27. Graham, N., Sutter, A. & Venkatesan, C. Spatial-frequency and orientation-selectivity of simple and complex channels in region segregation. Vision Res. 33, 1893–1911 (1993).

    Article  CAS  Google Scholar 

  28. Malik, J. & Perona, P. Preattentive texture discrimination with early vision mechanisms J. Opt. Soc. Am. A 7, 923–932 (1990).

    Article  CAS  Google Scholar 

  29. Kingdom, F. A. A. & Keeble, D. R. T. A linear systems approach to the detection of both abrupt and smooth spatial variations in orientation-defined textures. Vision Res. 36, 409–420 (1996).

    Article  CAS  Google Scholar 

  30. Rubenstein, B. S. & Sagi, D. Spatial variability as a limiting factor in texture discrimination tasks: implications for performance asymmetries. J. Opt. Soc. Am. A, 7, 1632–1643 (1990).

    Article  CAS  Google Scholar 

  31. DeValois, R. L., Albrecht, D. G. & Thorell, L. G. Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22, 545–559 (1982).

    Article  CAS  Google Scholar 

  32. Solomon, J. A. & Pelli, D. G. The visual filter mediating letter identification. Nature 369, 395–397 (1994).

    Article  CAS  Google Scholar 

  33. Stromeyer, C. F., Klein, S. & Sternheim, C. E. Is spatial adaptation caused by prolonged inhibition? Vision Res. 17, 603–606 (1977).

    Article  Google Scholar 

  34. Jonides, J. in Attention and Performance Vol. IX (eds. Long, J. B. & Baddeley, A. D.) 187–204 (Erlbaum, Hillsdale, New Jersey, 1981).

    Google Scholar 

  35. Robson, J. G. & Graham, N. Probability summation and regional variations in contrast sensitivity curves across the visual field. Vision Res. 21, 408–418 (1981).

    Article  Google Scholar 

  36. Sutter, A., Sperling, G. & Chubb, C. Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Res. 35, 915–924 (1995).

    Article  CAS  Google Scholar 

  37. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  CAS  Google Scholar 

  38. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  39. Reynolds, J. H. & Desimone, R. The role of neural mechanisms of attention in solving the binding problem. Neuron 24, 19–29 (1999).

    Article  CAS  Google Scholar 

  40. Graham, N. & Sutter, A. Spatial summation in simple (Fourier) and complex (Non-Fourier) texture channels. Vision Res. 38, 231–257 (1998).

    Article  CAS  Google Scholar 

  41. Heeger, D. J. Model for the extraction of image flow. J. Opt. Soc. Am. A 4, 1455–1471 (1987).

    Article  CAS  Google Scholar 

  42. Grossberg, S. & Mingolla, E. Neural dynamics of perceptual grouping: textures, boundaries, and emergent features. Percept. Psychophys. 38, 141–171 (1985).

    Article  CAS  Google Scholar 

  43. Foley, J. M. Human luminance pattern-vision mechanisms: Masking experiments require a new model. J. Opt. Soc. Amer. A 11, 1710–1719 (1994).

    Article  CAS  Google Scholar 

  44. Sagi, D. Detection of an orientation singularity in Gabor textures: effect of signal density and spatial-frequency. Vision Res. 30, 1377–1388 (1990).

    Article  CAS  Google Scholar 

  45. Joseph, J. S., Chun, M. M. & Nakayama, K. Attentional requirements in a ‘preattentive’ feature search task. Nature 387, 805–807 (1997).

    Article  CAS  Google Scholar 

  46. Motter, B. M. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  Google Scholar 

  47. Ito, M. & Gilbert, C. D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  Google Scholar 

  48. Brefczynski, J. A. & DeYoe, E. A. A physiological correlate of the ‘spotlight’ of visual attention. Nat. Neurosci. 2, 370–374 (1999).

    Article  CAS  Google Scholar 

  49. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 96, 3314–3319 (1999).

    Article  CAS  Google Scholar 

  50. Martinez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat. Neurosci. 2, 364–369 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by an NSF National Young Investigator Grant, a Cattell Sabbatical Fellowship and a Guggenheim Fellowship to M.C. We thank A.M. Vaduva for assistance in collecting data for experiment 2 and L. Cameron, E. Davis, J.D. Fernández, K. Frieder, M. Landy, L. Maloney, D. Pelli, C. Penpeci-Talgar, Y. Tsal and S. Wolfson for comments on a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marisa Carrasco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeshurun, Y., Carrasco, M. The locus of attentional effects in texture segmentation. Nat Neurosci 3, 622–627 (2000). https://doi.org/10.1038/75804

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing