Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult

Abstract

Serotonin is implicated in mood regulation, and drugs acting via the serotonergic system are effective in treating anxiety and depression. Specifically, agonists of the serotonin1A receptor have anxiolytic properties, and knockout mice lacking this receptor show increased anxiety-like behaviour. Here we use a tissue-specific, conditional rescue strategy to show that expression of the serotonin1A receptor primarily in the hippocampus and cortex, but not in the raphe nuclei, is sufficient to rescue the behavioural phenotype of the knockout mice. Furthermore, using the conditional nature of these transgenic mice, we suggest that receptor expression during the early postnatal period, but not in the adult, is necessary for this behavioural rescue. These findings show that postnatal developmental processes help to establish adult anxiety-like behaviour. In addition, the normal role of the serotonin1A receptor during development may be different from its function when this receptor is activated by therapeutic intervention in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic rescue strategy and 5-HT1AR expression.
Figure 2: Functional 5-HT1AR in the hippocampus, but not in raphe nuclei of rescue mice.
Figure 3: Anxiety-like behaviour in the rescue mice is normal.
Figure 4: Turning off 5-HT1AR in the adult does not alter anxiety-like behaviour.
Figure 5: Turning off 5-HT1AR during development is sufficient to reverse the rescue phenotype.
Figure 6: Expression of the 5-HT1AR during development by 125I-MPPI receptor autoradiography24.

Similar content being viewed by others

References

  1. Feighner, J. P. & Boyer, W. F. Serotonin-1A anxiolytics: an overview. Psychopathology 22 (Suppl. 1), 21–26 (1989).

    Article  Google Scholar 

  2. Menard, J. & Treit, D. Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci. Biobehav. Rev. 23, 591–613 (1999).

    Article  CAS  Google Scholar 

  3. Parks, C. L., Robinson, P. S., Sibille, E., Shenk, T. & Toth, M. Increased anxiety of mice lacking the serotonin1A receptor. Proc. Natl Acad. Sci. USA 95, 10734–10739 (1998).

    Article  CAS  ADS  Google Scholar 

  4. Ramboz, S. et al. Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc. Natl Acad. Sci. USA 95, 14476–14481 (1998).

    Article  CAS  ADS  Google Scholar 

  5. Heisler, L. K. et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl Acad. Sci. USA 95, 15049–15054 (1998).

    Article  CAS  ADS  Google Scholar 

  6. Sibille, E., Pavlides, C., Benke, D. & Toth, M. Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J. Neurosci. 20, 2758–2765 (2000).

    Article  CAS  Google Scholar 

  7. Gross, C., Santarelli, L., Brunner, D., Zhuang, X. & Hen, R. Altered fear circuits in 5-HT1A receptor KO mice. Biol. Psychiatry 48, 1157–1163 (2000).

    Article  CAS  Google Scholar 

  8. Luscher, C., Jan, L. Y., Stoffel, M., Malenka, R. C. & Nicoll, R. A. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19, 687–695 (1997).

    Article  CAS  Google Scholar 

  9. Mayford, M. et al. Control of memory formation through regulated expression of a CaMKII transgene. Science 274, 1678–1683 (1996).

    Article  CAS  ADS  Google Scholar 

  10. Kistner, A. et al. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc. Natl Acad. Sci. USA 93, 10933–10938 (1996).

    Article  CAS  ADS  Google Scholar 

  11. Martin, K. F., Phillips, I., Hearson, M., Prow, M. R. & Heal, D. J. Characterization of 8-OH-DPAT-induced hypothermia in mice as a 5-HT1A autoreceptor response and its evaluation as a model to selectively identify antidepressants. Br. J. Pharmacol. 107, 15–21 (1992).

    Article  CAS  Google Scholar 

  12. Fletcher, A. et al. Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav. Brain Res. 73, 337–353 (1996).

    Article  CAS  Google Scholar 

  13. Cao, B. J. & Rodgers, R. J. Influence of 5-HT1A receptor antagonism on plus-maze behaviour in mice. II. WAY 100635, SDZ 216-525 and NAN-190. Pharmacol. Biochem. Behav. 58, 593–603 (1997).

    Article  CAS  Google Scholar 

  14. Bayer, K. U., Lohler, J., Schulman, H. & Harbers, K. Developmental expression of the CaM kinase II isoforms: ubiquitous gamma- and delta-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res. Mol. Brain Res. 70, 147–154 (1999).

    Article  CAS  Google Scholar 

  15. Tweed, J. L., Schoenbach, V. J., George, L. K. & Blazer, D. G. The effects of childhood parental death and divorce on six-month history of anxiety disorders. Br. J. Psychiatry 154, 823–828 (1989).

    Article  CAS  Google Scholar 

  16. Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. J. Childhood parental loss and adult psychopathology in women. A twin study perspective. Arch. Gen. Psychiatry 49, 109–116 (1992).

    Article  CAS  Google Scholar 

  17. Coplan, J. D., Rosenblum, L. A. & Gorman, J. M. Primate models of anxiety. Longitudinal perspectives. Psychiatric Clin. North. Am. 18, 727–743 (1995).

    Article  CAS  Google Scholar 

  18. Caldji, C. et al. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl Acad. Sci. USA 95, 5335–5340 (1998).

    Article  CAS  ADS  Google Scholar 

  19. Mitchell, J. B., Iny, L. J. & Meaney, M. J. The role of serotonin in the development and environmental regulation of type II corticosteroid receptor binding in rat hippocampus. Brain Res. Dev. Brain Res. 55, 231–235 (1990).

    Article  CAS  Google Scholar 

  20. Lidov, H. G. & Molliver, M. E. An immunohistochemical study of serotonin neuron development in the rat: ascending pathways and terminal fields. Brain Res. Bull. 8, 389–430 (1982).

    Article  CAS  Google Scholar 

  21. Hohmann, C. F., Hamon, R., Batshaw, M. L. & Coyle, J. T. Transient postnatal elevation of serotonin levels in mouse neocortex. Brain Res. 471, 163–166 (1988).

    Article  CAS  Google Scholar 

  22. Cases, O. et al. Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16, 297–307 (1996).

    Article  CAS  Google Scholar 

  23. Upton, A. L. et al. Excess of serotonin (5-HT) alters the segregation of ispilateral and contralateral retinal projections in monoamine oxidase A knock-out mice: possible role of 5-HT uptake in retinal ganglion cells during development. J. Neurosci. 19, 7007–7024 (1999).

    Article  CAS  Google Scholar 

  24. Yan, W., Wilson, C. C. & Haring, J. H. Effects of neonatal serotonin depletion on the development of rat dentate granule cells. Brain Res. Dev. Brain Res. 98, 177–184 (1997).

    Article  CAS  Google Scholar 

  25. Haring, J. H. & Yan, W. Dentate granule cell function after neonatal treatment with parachloroamphetamine or 5,7-dihydroxytryptamine. Brain Res. Dev. Brain Res. 114, 269–272 (1999).

    Article  CAS  Google Scholar 

  26. Durig, J. & Hornung, J. P. Neonatal serotonin depletion affects developing and mature mouse cortical neurons. Neuroreport 11, 833–837 (2000).

    Article  CAS  Google Scholar 

  27. Yan, W., Wilson, C. C. & Haring, J. H. 5-HT1a receptors mediate the neurotrophic effect of serotonin on developing dentate granule cells. Brain Res. Dev. Brain Res. 98, 185–190 (1997).

    Article  CAS  Google Scholar 

  28. Kung, M. P., Frederick, D., Mu, M., Zhuang, Z. P. & Kung, H. F. 4-(2′-methoxy-phenyl)-1-[2′-(n-2″-pyridinyl)-p-idobenzamido]-ethyl-piperazine ([125I]p-MPPI) as a new selective radioligand of serotonin-1A sites in rat brain: in vitro binding and autoradiographic studies. J. Pharmacol. Exp. Ther. 272, 429–437 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank I. Mendez for her help with mouse husbandry and behavioural analysis. This research was supported by grants from NIMH (C.G., S.B., R.H.), NINDS (S.B.), NIDA (R.H.), and NARSAD (X.Z., L.S., R.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Hen.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, C., Zhuang, X., Stark, K. et al. Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416, 396–400 (2002). https://doi.org/10.1038/416396a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416396a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing