Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visual features that vary together over time group together over space

An Erratum to this article was published on 01 August 1998

Abstract

The visual system perceives objects as coherent even when some parts are hidden or discontinuous. How this representation is constructed from local features of many nearby objects is termed the 'binding problem.' Here we manipulate contrast in several drifting gratings that can be perceived as either independent objects or parts of a single object. Contrast modulations that are correlated in time enhance perceptual coherence, whereas uncorrelated modulations impair coherence. Presumably, correlated contrast modulations produce correlated responses in cortical neurons. Therefore, our results are consistent with the hypothesis that temporal correlation of neural activity is important for feature binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global motion perceived from local drifting gratings.
Figure 2: Global rotation perceived from local oscillations.
Figure 3: Plaid coherence perceived from drifting gratings.

Similar content being viewed by others

References

  1. Köhler, W. Gestalt psychology (Meridian Press, New York, 1947)

    Google Scholar 

  2. Van Essen, D.C., Anderson, C.H. & Felleman, D.J. Information processing in the primate visual system: an integrated systems perspective. Science 255, 419–423 (1992)

    Article  CAS  Google Scholar 

  3. Zeki, S. A Vision of the brain. (Blackwell, Cambridge MA, 1993)

    Google Scholar 

  4. Hardcastle, V. Psychology's binding problem and possible neurobiological solutions. J. Consciousn. Studies 1, 66–90 ( 1994)

    Google Scholar 

  5. Damasio, A.R. The brain binds entities and events by multiregional activation from convergence zones . Neural Computation 1, 123– 132 (1989)

    Article  Google Scholar 

  6. Milner, P.M. A model for visual shape recognition. Psychol. Rev. 81, 521–535 (1974)

    Article  CAS  Google Scholar 

  7. von der Malsburg, C. in Brain Theory (eds Palm, G. & Aertsen, A.) 161– 176 (Springer, Berlin, 1986)

    Book  Google Scholar 

  8. Singer, W. & Gray, C.M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995)

    Article  CAS  Google Scholar 

  9. Crick, F. & Koch, C. Towards a neurobiological theory of consciousness. Semin. Neurosci. 2, 263– 275 (1990)

    Google Scholar 

  10. Singer, W. Search for coherence: A basic principle of cortical self-organization. Concepts Neurosci. 1, 1–26 (1990 )

    Google Scholar 

  11. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M. & Kruse, W. Coherent oscillations: a mechanism for feature linking in the visual cortex? Biol. Cybern. 60, 121–130 (1988)

    Article  CAS  Google Scholar 

  12. Lorenceau, J. & Shiffrar, M. The influence of terminators on motion integration across space. Vision Res. 32, 263–273 (1992)

    Article  CAS  Google Scholar 

  13. Alais, D., van der Smagt, M.J., van den Berg, A.V. & van de Grind, W.A. Local and global factors affecting the coherent motion of gratings presented in multiple apertures. Vision Res. (in press)

  14. Bodis-Wollner, I., Hendley, C.D., & Kulikowski, J.J. Electrophysiological and psychophysical responses to modulation of contrast of a grating pattern. Perception 1, 341–349 (1972)

    Article  CAS  Google Scholar 

  15. Enroth-Cugell, C. & Robson, J.G. The contrast sensitivity of retinal ganglion cells in the cat. J. Physiol. 187, 517–522 (1966)

    Article  CAS  Google Scholar 

  16. Troy, J.B. & Enroth-Cugell, C. X and Y ganglion cells inform the cat's brain about contrast in the retinal image. Exp. Brain Res. 93, 383–399 ( 1993)

    Article  CAS  Google Scholar 

  17. Hamilton, D.B. Albrecht, D.G. & Geisler, W S. Visual cortical receptive fields in monkey and cat: spatial and temporal phase transfer function. Vision Res. 29 , 1285–1308 (1989)

    Article  CAS  Google Scholar 

  18. Chubb, C. & Sperling, G. Two motion perception mechanisms revealed through distance-driven reversal of apparent motion. Proc. Natl. Acad. Sci. USA 86, 2985– 2989 (1989)

    Article  CAS  Google Scholar 

  19. Cavanagh, P. & Mather, G. Motion: the long and the short of it. Spatial Vision 4, 103– 129 (1989)

    Article  CAS  Google Scholar 

  20. Smith, A.T. & Ledgeway, T. Sensitivity to second-order motion as a function of temporal frequency and eccentricity. Vision Res. 38, 403–410 ( 1998)

    Article  CAS  Google Scholar 

  21. Adelson, E.H. & Movshon, J.A. Phenomenal coherence of moving visual patterns. Nature 300, 523– 525 (1982)

    Article  CAS  Google Scholar 

  22. Fahle, M. & Koch, C. Spatial displacement, not temporal asynchrony, destroys figural binding. Vision Res. 35 , 491–494 (1995)

    Article  CAS  Google Scholar 

  23. Kiper, D.C., Gegenfurtner, K.R. & Movshon, J.A. Cortical oscillatory responses do not affect visual segmentation . Vision Res. 36, 539–544 (1996)

    Article  CAS  Google Scholar 

  24. Leonards, U., Singer, W. & Fahle, M. The influence of temporal phase differences on texture segmentation. Vision Res. 36, 2689–2697 (1996)

    Article  CAS  Google Scholar 

  25. Fahle, M. Figure-ground discrimination from temporal information. Proc. R. Soc. Lond. B , 254, 199–203 ( 1993)

    Article  CAS  Google Scholar 

  26. Kojima, H. Figure/ground segregation from temporal delay is best at high spatial frequencies. Vision Res. (in press)

  27. Gilbert, C.D. Horizontal integration and cortical dynamics. Neuron 9, 1–13 (1992)

    Article  CAS  Google Scholar 

  28. Blake, R. & Yang, Y. Spatial and temporal coherence in perceptual binding. Proc. Natl. Acad. Sci. USA 94, 7115–7119 (1997)

    Article  CAS  Google Scholar 

  29. Brainard, D.H. The psychophysics toolbox. Spatial Vision 10, 443– 446 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Haruyuki Kojima, Jeffrey Schall, George Sperling and Zhong-Lin Lu for helpful discussion. This work is supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph Blake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alais, D., Blake, R. & Lee, SH. Visual features that vary together over time group together over space . Nat Neurosci 1, 160–164 (1998). https://doi.org/10.1038/414

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing