Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET

Abstract

Schizophrenia is believed to involve altered activation of dopamine receptors, and support for this hypothesis conies from the antipsychotic effect of antagonists of the dopamine D2 receptor (D2R)1. D2R is expressed most highly in the striatum, but most of the recent positron emission tomography (PET) studies have failed to show any change in D2R densities in the striatum of schizophrenics2–5, raising the possibility that other receptors may also be involved. In particular, the dopamine D1 receptor (D1R), which is highly expressed in the prefrontal cortex6, has been implicated in the control of working memory7,8, and working memory dysfunction is a prominent feature of schizophrenia9. We have therefore used PET to examine the distribution of D1R and D2R in brains of drug-naive or drug-free schizophrenic patients. Although no differences were observed in the striatum relative to control subjects, binding of radioligand to D1R was reduced in the prefrontal cortex of schizophrenics. This reduction was related to the severity of the negative symptoms (for instance, emotional withdrawal) and to poor performance in the Wisconsin Card Sorting Test10. We propose that dysfunction of D1R signalling in the prefrontal cortex may contribute to the negative symptoms and cognitive deficits seen in schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seeman, P., Lee, T., Chau-Wong, M. & Wong, K. Nature 261, 717–719 (1976).

    Article  ADS  CAS  Google Scholar 

  2. Hietala, J. et al. Archs Gen. Psychiat. 51, 116–123 (1994).

    Article  CAS  Google Scholar 

  3. Martinot, J. L., Person-Magnan, P., Huret, J. D. & Mazoyer, B. Am. J. Psychiat. 147, 44–50 (1990).

    Article  CAS  Google Scholar 

  4. Nordström, A. L., Farde, L., Eriksson, L. & Halldin, C. Psychiat. Res. Neuroimag. 61, 67–83 (1995).

    Article  Google Scholar 

  5. Farde, L. et al. Archs Gen. Psychiat. 47, 213–219 (1990).

    Article  CAS  Google Scholar 

  6. Hall, H. et al. Neuropsychopharmacology 11, 245–256 (1994).

    Article  CAS  Google Scholar 

  7. Sawaguchi, T. & Goldman-Rakic, P. S. Science 251, 947–950 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Williams, G. V. & Goldman-Rakic, P. S. Nature 376, 572–575 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Goldman-Rakic, P. S. J. Neuropsychiat. Clin. Neurosci. 6, 348–357 (1994).

    Article  CAS  Google Scholar 

  10. Kashima. H. Jpn J. Psychopharmacol. 11, 83–88 (1991).

    CAS  Google Scholar 

  11. Farde, L., Halldin, C., Stone, E. S. & Sedvall, G. Psychopharmacology 92, 278–284 (1987).

    Article  CAS  Google Scholar 

  12. Anderson, P. & Gronvald, F. Life Sci. 38, 1507–1514 (1986).

    Article  Google Scholar 

  13. Wong, D. F. et al. Science 226, 1393–1396 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Hess, E. J., Bracha, H. S., Kleinman, J. E. & Creese, I. Life Sci. 40, 1487–1497 (1987).

    Article  CAS  Google Scholar 

  15. Sedvall, G. & Farde, L. Lancet 346, 743–749 (1995).

    Article  CAS  Google Scholar 

  16. Mintun, M. A., Raichle, M. E., Kilbourn, M. R., Wooten, G. F. & Welch, M. J. Ann. Neural. 15, 217–227 (1984).

    Article  CAS  Google Scholar 

  17. Weinberger, D. R., Berman, K. F. & Zec, R. F. Archs Gen. Psychiat. 43, 114–124 (1986).

    Article  CAS  Google Scholar 

  18. Brozoski, T., Brown, R., Rosvold, H. & Goldman-Rakic, P. S. Science 205, 929–931 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Davidson, M. & Davis, K. Archs Gen Psychiat. 45, 561–563 (1988).

    Article  CAS  Google Scholar 

  20. Daniel, D., Weinberger, D. & Jones, D. J. Neurosci. 11, 1907–1917 (1991).

    Article  CAS  Google Scholar 

  21. Dolan, R. J. et al. Nature 378, 180–182 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Asahina, M. et al. Acta Neurol. Scand. 91, 437–443 (1995).

    Article  CAS  Google Scholar 

  23. Suhara, T. et al. Psychopharmacology 103, 41–45 (1991).

    Article  CAS  Google Scholar 

  24. Patlak, C. & Blasberg, R. J. Cereb. Blood Flow Metab. 5, 584–590 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okubo, Y., Suhara, T., Suzuki, K. et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634–636 (1997). https://doi.org/10.1038/385634a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385634a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing