Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two stages of visual processing for radial and circular motion

Abstract

As we move through our environment, the flow of the deforming images on our retinae provides rich information about ego motion and about the three-dimensional structure of the external world. Flow-fields comprise five independent compenents, including radial and circular motion1á¤-3. Here we provide psychophysical evidence for the existence of neural mechanisms in human vision that integrate motion signals along these complex trajectories. Signal-to-noise sensitivity for discriminating the direction of radial, circular and translational motion increased predictably with the number of exposed sectors, implying the existence of specialized detectors that integrate motion signals of different directions from different locations. However, contrast sensitivity for complex motion did not increase greatly with sector number, implying that the specialized detectors are preceded by a first stage of local-motion mechanisms that impose a contrast threshold. These findings fit well with recent electrophysiological evidence in monkey4á¤-7 showing that whereas motion-sensitive neurons in primary visual cortex respond best to local translation, many neurons in the medial superior temporal cortex have large receptive fields tuned to radial, circular or spiral motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Helmholtz, H. Crelles J. 55, 25–39 (1858).

    Article  MathSciNet  Google Scholar 

  2. Koenderink, J. J. Vision Res. 26, 161–168 (1986).

    Article  CAS  Google Scholar 

  3. Verri, A., Girosi, F. & Torre, V. J. opt. Soc. Am. A7, 912–922 (1990).

    Article  ADS  Google Scholar 

  4. Tanaka, K. & Saito, H. J. Neurophysiol. 62, 626–641 (1989).

    Article  CAS  Google Scholar 

  5. Duffy, C. J. & Wurtz, R. H. J. Neurophysiol. 65, 1329–1345 (1991).

    Article  CAS  Google Scholar 

  6. Orban, G. A. et al. Proc. natn. Acad. Sci. U.S.A. 89, 2595–2599 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Graziano, M. S. A., Andersen, R. A. & Snowden, R. J. J. Neurosci. 14, 54–67 (1994).

    Article  CAS  Google Scholar 

  8. Green, D. A. & Swets, J. A. Signal detection theory and psychophysics (Wiley, New York, 1966).

    Google Scholar 

  9. Barlow, H. B. Vision Res. 18, 637–655 (1978).

    Article  CAS  Google Scholar 

  10. Graham, N. Vision Res. 17, 637–652 (1977).

    Article  CAS  Google Scholar 

  11. Pelli, D. G. J. opt. Soc. Am. A2, 1508–1532 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Andersen, S. J. & Burr, D. C. Vision Res. 27, 621–635 (1987).

    Article  Google Scholar 

  13. Anderson, S. J. & Burr, D. C. J. opt. Soc. Am. A8, 1330–1339 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Watamaniuk, S. N. J. & Sekuler, R. Vision Res. 32, 2341–2347 (1992).

    Article  CAS  Google Scholar 

  15. Fredericksen, R. E., Verstraten, A. J. & van de Grind, W. A. Vision Res. 34, 3171–3188 (1994).

    Article  CAS  Google Scholar 

  16. Morgan, M. J. Nature 355, 344–346 (1992).

    Article  ADS  CAS  Google Scholar 

  17. Braddick, O. Vision Res. 14, 519–527 (1974).

    Article  CAS  Google Scholar 

  18. Yang, Y. & Blake R. Nature 371, 793–796 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Regan, D. & Beverly, K. I., Vision Res. 18, 415–421 (1978).

    Article  CAS  Google Scholar 

  20. Beverley, K. I. & Regan, D. Vision Res. 19, 1093–1104 (1979).

    Article  CAS  Google Scholar 

  21. Petersik, J. T., Beverley, K. I. & Regan, D. Vision Res. 21, 829–832 (1981).

    Article  CAS  Google Scholar 

  22. Saito, H.-A. et al. J. Neurosci. 7, 177–191 (1986).

    CAS  Google Scholar 

  23. Hannon, W. H. & Hannon, D. J. Nature 336, 162–163 (1988).

    Article  ADS  Google Scholar 

  24. Warren, W. H. & Hannon, D. J. J. opt. Soc. Am. A7, 160–169 (1990).

    Article  ADS  Google Scholar 

  25. Watson, A. B. & Pelli, D. G. Percept. Psychophys. 33, 113–120 (1983).

    Article  CAS  Google Scholar 

  26. Nelder, J. A. & Mead, R. Computer J. 7, 308–313 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morrone, M., Burr, D. & Vaina, L. Two stages of visual processing for radial and circular motion. Nature 376, 507–509 (1995). https://doi.org/10.1038/376507a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/376507a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing