Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL

Abstract

CHROMOSOMAL translocations associated with malignancies often result in deregulated expression of genes encoding transcription factors1. In human T-cell leukaemias such regulators belong to diverse protein families and may normally be expressed widely (for example, Ttg-1/rbtnl, Ttg-2/rbtn2) 2,3, exclusively outside the haematopoietic system (for example, Hoxll) 4, or specifically in haematopoietic cells and other selected sites (for example, tal-1/ SCL, lyl-1) 5,6. Aberrant expression within T cells is thought to interfere with programmes of normal maturation. The most frequently activated gene in acute T-cell leukaemias, tal-1 (also called SCL) 7,8, encodes a candidate regulator of haematopoietic development9, a basic-helix-loop-helix protein5, related to critical myogenic10 and neurogenic11 factors. Here we show by targeted gene disruption in mice12 that tal-1 is essential for embryonic blood formation in vivo. With respect to embryonic erythropoiesis, tal-1 deficiency resembles loss of the erythroid transcription factor GATA-113,14 or the LIM protein rbtn215 .Profound reduction in myeloid cells cultured in vivo from tal-1 null yolk sacs suggests a broader defect manifest at the myelo-erythroid or multipotential progenitor cell level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rabbitts, T. H. Nature 372, 143–149 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Boehm, T. et al. EMBO J. 7, 385–394 (1988).

    Article  CAS  Google Scholar 

  3. Royer-Pokora, B., Loos, U. & Ludwig, W.-D. Oncogene 6, 1887–1893 (1991).

    CAS  PubMed  Google Scholar 

  4. Roberts, C. W. M., Shutter, J. R. & Korsmeyer, S. J. Nature 368, 747–749 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Begley, C. G. et al. Proc. natn. Acad. Sci. U.S.A. 86, 10128–10132 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Mellentin, J. D., Smith, S. D. & Cleary, M. L. Cell 58, 77–83 (1989).

    Article  CAS  Google Scholar 

  7. Brown, L. et al. EMBO J. 9, 3343–3551 (1990).

    Article  CAS  Google Scholar 

  8. Aplan, P. D. et al. Science 250, 1426–1429 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Visvader, J., Begley, C. G. & Adams, J. M. Oncogene 6, 187–194 (1991).

    CAS  PubMed  Google Scholar 

  10. Olson, E. N. & Klein, W. H. Genes Dev. 8, 1–8 (1994).

    Article  CAS  Google Scholar 

  11. Guillemot, F. et al. Cell 75, 463–476 (1993).

    Article  CAS  Google Scholar 

  12. Capecchi, M. R. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Pevny, L. et al. Nature 349, 257–260 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Weiss, M. J., Keller, G. & Orkin, S. H. Genes Dev. 8, 1184–1197 (1994).

    Article  CAS  Google Scholar 

  15. Warren, A. J. et al. Cell 78, 45–57 (1994).

    Article  CAS  Google Scholar 

  16. Tsai, S. F. et al. Nature 339, 446–51 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Mucenski, M. L. et al. Cell 65, 677–689 (1991).

    Article  CAS  Google Scholar 

  18. Wong, P. M. C., Chung, S. W., Chui, D. H. K. & Eaves, C. J. Proc. natn. Acad. Sci. U.S.A. 83, 3851–3854 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Rudnicki, M. A. et al. Cell 75, 1351–1359 (1993).

    Article  CAS  Google Scholar 

  20. Aplan, P. D., Nakahara, K., Orkin, S. H. & Kirsch, I. R. EMBO J. 11, 4073–4081 (1992).

    Article  CAS  Google Scholar 

  21. Kallianpur, A. R., Jordan, J. E. & Brandt, S. J. Blood 83, 1200–1208 (1994).

    CAS  PubMed  Google Scholar 

  22. Hwang, L.-Y., Siegelman, M., Davis, L., Oppenheimer-Marks, N. & Baer, R. Oncogene 8, 3043–3046 (1993).

    CAS  PubMed  Google Scholar 

  23. Valge-Archer, V. E. et al. Proc. natn. Acad. Sci. U.S.A. 91, 8617–8621 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Tybulewicz, V. L. J., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  25. Ausubel, F. M. et al. Curr. Prot. molec. Biol. (1987).

  26. Begley, C. G. et al. Proc. natn. Acad. Sci. U.S.A. 88, 869–873 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Li, E., Bestor, T. H. & Jaenisch, R. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  28. Tsai, F.-Y. et al. Nature 371, 221–226 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Chomczynski, P. & Sacchi, N. Analyt. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  30. Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M. V. Molec. cell. Biol. 13, 472–486 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shivdasani, R., Mayer, E. & Orkin, S. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373, 432–434 (1995). https://doi.org/10.1038/373432a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373432a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing