Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recognition of UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3′ untranslated region

Abstract

SELENOCYSTEINE is incorporated cotranslationally at UGA codons, normally read as stop codons, in several bacterial proteins1,2 and in the mammalian proteins glutathione peroxidase (GPX)3–5, selenoprotein P6 and Type Iiodothyronine 5′ deiodinase (5′DI)7. Previous analyses in bacteria have suggested that a stem–loop structure involving the UGA codon and adjacent sequences is necessary and sufficient for selenocysteine incorporation into formate dehydrogenase and glycine reductase2,8,9. We used the recently cloned 5′DI to investigate selenoprotein synthesis in eukaryotes. We show that successful incorporation of seleno-cysteine into this enzyme requires a specific 3′ untranslated (3′ut) segment of about 200 nucleotides, which is found in both rat and human 5′DI messenger RNAs. These sequences are not required for expression of a cysteine-mutant deiodinase. Although there is little primary sequence similarity between the 3′ut regions of these mRNAs and those encoding GPX, the 3′ut sequences of rat GPX can substitute for the 5′DI sequences in directing selenocysteine insertion. Computer analyses predict similar stem-loop structures in the 3′ut regions of the 5′DI and GPX mRNAs. Limited mutations in these structures reduce or eliminate their capacity to permit 5′DI translation. These results identify a 'selenocysteine-insertion sequence' motif in the 3′ut region of these mRNAs that is essential for successful translation of 5′DI, presumably GPX, and possibly other eukaryotic selenocysteine-containing proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zinoni, F., Birkmann, A., Stadtman, T. & Bock, A. Proc. natn. Acad. Sci. U.S.A. 83, 4650–4654 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Garcia, G. E. & Stadtman, T. C. J. Bact. 174, 2093–2098 (1991).

    Article  Google Scholar 

  3. Chambers, I. et al. EMBO J. 5, 1221–1227 (1986).

    Article  CAS  Google Scholar 

  4. Mullenbach, G. T. et al. Protein Eng. 2, 239–246 (1988).

    Article  CAS  Google Scholar 

  5. Takahashi, K. et al. J. Biochem. 108, 145–148 (1990).

    Article  CAS  Google Scholar 

  6. Hill, K. E., Lloyd, R. S., Yang, J. G., Read, R. & Burk, R. F. J. biol. Chem. 266, 10050–10053 (1991).

    CAS  PubMed  Google Scholar 

  7. Berry, M. J., Banu, L. & Larsen, P. R. Nature 349, 438–440 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Zinoni, F., Heider, J. & Bock, A. Proc. natn. Acad Sci. U.S.A. 87, 4660–4664 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Bock, A. Molec. Microbiol. 5, 515–520 (1991).

    Article  CAS  Google Scholar 

  10. Berry, M. J., Kieffer, J. D., Harney, J. W. & Larsen, P. R. J. biol. Chem. 266, 14155–14158 (1991).

    CAS  PubMed  Google Scholar 

  11. Ho, Y.-S., Howard, A. J. & Crapo, J. Nucleic Acids Res. 16, 5207 (1988).

    Article  CAS  Google Scholar 

  12. Aruffo, A. & Seed, B. Proc. natn. Acad. Sci. U.S.A. 84, 8573–8577 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Brent, G. A. et al. Molec. Endocrinol. 3, 1996–2004 (1989).

    Article  CAS  Google Scholar 

  14. Devereux, J. Haeberli, P. & Smithies, O. Nucleic Acids Res. 12, 387–395 (1984).

    Article  CAS  Google Scholar 

  15. Higuchi, R. in PCR Protocols (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J & White, T. J.) 177–183 (Academic, New York, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berry, M., Banu, L., Chen, Y. et al. Recognition of UGA as a selenocysteine codon in Type I deiodinase requires sequences in the 3′ untranslated region. Nature 353, 273–276 (1991). https://doi.org/10.1038/353273a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353273a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing