Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Visual illusions and neurobiology

Abstract

The complex structure of the visual system is sometimes exposed by its illusions. The historical study of systematic misperceptions, combined with a recent explosion of techniques to measure and stimulate neural activity, has provided a rich source for guiding neurobiological frameworks and experiments.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illusions arising from lateral inhibition and excitation.
Figure 2: Illusory contours and brightness enhancement.
Figure 3: After-effects and competing populations.
Figure 4: Multistable stimuli and active perception.

References

  1. Külpe, O. Grundriss der Psychologie. Auf experimenteller Grundlage dargestellt (Wilhelm Engelmann, Leipzig, 1893).

    Google Scholar 

  2. Exner, S. Experimentelle Untersuchung der einfachsten psychischen Processe. Pflugers Arch. Physiol. 11, 403–432 (1875).

    Google Scholar 

  3. Wertheimer, M. Experimentelle Studien über das Sehen von Behwegung. Zeitschrfit für Psychologie 61, 161–265 (1912).

    Google Scholar 

  4. Ratliff, F. in Ernst Mach Physicist and Philosopher (eds Cohen, R. S. & Seeger, R. J.) 165–184 (Reidel, Dordrecht, 1970).

    Google Scholar 

  5. Maffei, L. & Fiorentini, A. The unresponsive regions of visual cortical receptive fields. Vision Res. 16, 1131–1139 (1976).

    CAS  PubMed  Google Scholar 

  6. Allman, J., Miezin, F. & McGuinness, E. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local–global comparisons in visual neurons. Annu. Rev. Neurosci. 8, 407–430 (1985).

    CAS  PubMed  Google Scholar 

  7. Sabra, A. I. The Optics of Ibn Al-Haytham Vols I and II (The Warburg Institute, London, 1989).

    Google Scholar 

  8. Hering, E. Der Raumsinn und die Bewegungen des Auges (F. C. W. Fogel, Leipzig, 1879).

    Google Scholar 

  9. Rossi, A. F. & Paradiso, M. A. Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex. J. Neurosci. 19, 6145–6156 (1999).

    CAS  PubMed  Google Scholar 

  10. Lamme, V. A., Super, H. & Spekreijse, H. Feedforward, horizontal, and feedback processing in the visual cortex. Curr. Opin. Neurobiol. 8, 529–535 (1998).

    CAS  PubMed  Google Scholar 

  11. Castet, E., Lorenceau, J., Shiffrar, M. & Bonnet, C. Perceived speed of moving lines depends on orientation, length, speed and luminance. Vision Res. 33, 1921–1936 (1993).

    CAS  PubMed  Google Scholar 

  12. Bringuier, V., Chavane, F., Glaeser, L. & Fregnac, Y. Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons. Science 283, 695–699 (1999).

    CAS  PubMed  Google Scholar 

  13. Chavane, F. et al. The visual cortical association field: a Gestalt concept or a psychophysiological entity? J. Physiol. (Paris) 94, 333–342 (2000).

    CAS  Google Scholar 

  14. Kanizsa, G. Margini quasi-percettivi in campi con stimolazione omogenea. Rivista di Psicologia 49, 7–30 (1955).

    Google Scholar 

  15. Kanizsa, G. Subjective contours. Sci. Am. 234, 48–52 (1976).

    CAS  PubMed  Google Scholar 

  16. Schumann, F. Einege Beobachtungen uber die Zusammenfassung von Gesichtseindrucken zu Einheiten. Zeitschrift für Psychologie 23, 1–23 (1900).

    Google Scholar 

  17. Spillmann, L. & Dresp, B. Phenomena of illusory form: can we bridge the gap between levels of explanation? Perception 24, 1333–1364 (1995).

    CAS  PubMed  Google Scholar 

  18. Parks, T. E. Rock's cognitive theory of illusory figures: a commentary. Perception 30, 627–631 (2001).

    CAS  PubMed  Google Scholar 

  19. Von der Heydt, R., Peterhans, E. & Baumgartner, G. Illusory contours and cortical neuron responses. Science 224, 1260–1262 (1984).

    CAS  PubMed  Google Scholar 

  20. Grosof, D. H., Shapley, R. M. & Hawken, M. J. Macaque V1 neurons can signal 'illusory' contours. Nature 365, 550–552 (1993).

    CAS  PubMed  Google Scholar 

  21. Lee, T. S. & Nguyen, M. Dynamics of subjective contour formation in the early visual cortex. Proc. Natl Acad. Sci. USA 98, 1907–1911 (2001).

    CAS  PubMed  Google Scholar 

  22. Hering, E. Zur Lehre vom Lichtsinne (Carl Gerolds Sohn, Vienna, 1878).

    Google Scholar 

  23. Von Helmholtz, H. Handbuch der Physiologischen Optik (Voss, Hamburg, 1867).

    Google Scholar 

  24. Hurvich, L. M. & Jameson, D. Some quantitative aspects of an opponent-colors theory. IV. A psychological color specification system. J. Opt. Soc. Am. 46, 416–421 (1956).

    CAS  PubMed  Google Scholar 

  25. De Valois, R. L., Abramov, I. & Jacobs, G. H. Analysis of response patterns of LGN cells. J. Opt. Soc. Am. 7, 966–977 (1966).

    Google Scholar 

  26. Sutherland, N. S. Figural after-effects and apparent size. Q. J. Psychol. 8, 222–228 (1961).

    Google Scholar 

  27. Wade, N. J. & Verstraten, F. A. J. in The Motion Aftereffect: a Modern Perspective (eds Mather, G., Verstraten, F. & Anstis, S.) 1–23 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  28. Barlow, H. B. & Hill, R. M. Evidence for a physiological explanation of the waterfall phenomenon and figural aftereffects. Nature 200, 1434–1435 (1963).

    Google Scholar 

  29. Wohlgemuth, A. On the after-effect of seen movement. Br. J. Psychol. (Suppl.) 1, 1–117 (1911).

    Google Scholar 

  30. McCollough, C. Color adaptation of edge-detectors in the human visual system. Science 149, 1115–1116 (1965).

    CAS  PubMed  Google Scholar 

  31. Anstis, S. M. in Handbook of Psychobiology (eds Gazzaniga, M. S. & Blakemore, C.) 269–323 (Academic, New York, 1975).

    Google Scholar 

  32. Blakemore, C. & Campbell, F. W. Adaptation to spatial stimuli. J. Physiol. (Lond.) 1, 11P–13P (1969).

    Google Scholar 

  33. Westheimer, G. The Fourier theory of vision. Perception 30, 531–541 (2001).

    CAS  PubMed  Google Scholar 

  34. Levelt, W. J. M. On Binocular Rivalry (Royal VanGorcum, Assen, The Netherlands, 1965).

    Google Scholar 

  35. Lansing, R. W. Electroencephalographic correlates of binocular rivalry in man. Science 146, 1325–1327 (1964).

    CAS  PubMed  Google Scholar 

  36. Logothetis, N. K. & Schall, J. D. Neuronal correlates of subjective visual perception. Science 245, 761–763 (1989).

    CAS  PubMed  Google Scholar 

  37. Leopold, D. A. & Logothetis, N. K. Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry. Nature 379, 549–553 (1996).

    CAS  PubMed  Google Scholar 

  38. Sheinberg, D. L. & Logothetis, N. K. The role of temporal cortical areas in perceptual organization. Proc. Natl Acad. Sci. USA 94, 3408–3413 (1997).

    CAS  PubMed  Google Scholar 

  39. Logothetis, N. K., Leopold, D. A. & Sheinberg, D. L. What is rivalling during binocular rivalry? Nature 380, 621–624 (1996).

    CAS  PubMed  Google Scholar 

  40. Dayan, P. A hierarchical model of binocular rivalry. Neural Comput. 10, 1119–1135 (1998).

    CAS  PubMed  Google Scholar 

  41. Tong, F. & Engel, S. A. Interocular rivalry revealed in the human cortical blind-spot representation. Nature 411, 195–199 (2001).

    CAS  PubMed  Google Scholar 

  42. Lumer, E. D., Friston, K. J. & Rees, G. Neural correlates of perceptual rivalry in the human brain. Science 280, 1930–1934 (1998).

    CAS  PubMed  Google Scholar 

  43. Tong, F., Nakayama, K., Vaughan, J. T. & Kanwisher, N. Binocular rivalry and visual awareness in human extrastriate cortex. Neuron 21, 753–759 (1998).

    CAS  PubMed  Google Scholar 

  44. Pulfrich, C. Die Stereoskopie im Dienste der isochromen und heterochromen Photometrie. Die Naturwissenschafte 10, 553–761 (1922).

    Google Scholar 

  45. Moutoussis, K. & Zeki, S. A direct demonstration of perceptual asynchrony in vision. Proc. R. Soc. Lond. B 264, 393–399 (1997).

    CAS  Google Scholar 

  46. Johnston, A. & Nishida, S. Time perception: brain time or event time? Curr. Biol. 11, R427–R430 (2001).

    CAS  PubMed  Google Scholar 

  47. Purushothaman, G., Patel, S. S., Bedell, H. E. & Ogmen, H. Moving ahead through differential visual latency. Nature 396, 424 (1998).

    CAS  PubMed  Google Scholar 

  48. Whitney, D. & Murakami, I. Latency difference, not spatial extrapolation. Nature Neurosci. 1, 656–657 (1998).

    CAS  PubMed  Google Scholar 

  49. Baldo, M. V. & Klein, S. A. Extrapolation or attention shift? Nature 378, 565–566 (1995).

    CAS  PubMed  Google Scholar 

  50. MacKay, D. Perceptual stability of a stroboscopically lit visual field containing self-luminous objects. Nature 181, 507–508 (1958).

    CAS  PubMed  Google Scholar 

  51. Nijhawan, R. Motion extrapolation in catching. Nature 370, 256–257 (1994).

    CAS  PubMed  Google Scholar 

  52. Eagleman, D. M. & Sejnowski, T. J. Latency difference versus postdiction: response to Patel et al. Science 290, 1051a (2000).

    Google Scholar 

  53. Eagleman, D. M. & Sejnowski, T. J. Motion integration and postdiction in visual awareness. Science 287, 2036–2038 (2000).

    CAS  PubMed  Google Scholar 

  54. Eagleman, D. M. & Sejnowski, T. J. The position of moving objects: response to Krekelberg et al. Science 289, 1107a (2000).

    PubMed  Google Scholar 

  55. James, W. The Principles of Psychology (Dover, New York, 1890).

    Google Scholar 

  56. Dennett, D. C. Consciousness Explained (Little Brown & Co., New York, 1992).

    Google Scholar 

  57. Pascual-Leone, A. & Walsh, V. Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292, 510–512 (2001).

    CAS  PubMed  Google Scholar 

  58. Bachmann, T. Psychophysiology of Visual Masking (Nova Science, Commack, New York, 1994).

    Google Scholar 

  59. Macknik, S. L. & Livingstone, M. S. Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neurosci. 1, 144–149 (1998).

    CAS  PubMed  Google Scholar 

  60. Macknik, S. L. & Haglund, M. M. Optical images of visible and invisible percepts in the primary visual cortex of primates. Proc. Natl Acad. Sci. USA 96, 15208–15210 (1999).

    CAS  PubMed  Google Scholar 

  61. Libet, B., Wright, E. W., Feinstein, B. & Pearl, D. K. Subjective referral of the timing for a conscious sensory experience. Brain 102, 193–224 (1979).

    CAS  PubMed  Google Scholar 

  62. Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000).

    CAS  PubMed  Google Scholar 

  63. Celebrini, S. & Newsome, W. T. Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J. Neurophysiol. 73, 437–448 (1995).

    CAS  PubMed  Google Scholar 

  64. Walsh, V. & Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nature Rev. Neurosci. 1, 73–79 (2000).

    CAS  Google Scholar 

  65. McGurk, H. & MacDonald, J. Hearing lips and seeing voices. Nature 264, 746–748 (1976).

    CAS  PubMed  Google Scholar 

  66. Schwartz, J., Robert-Ribes, J. & Escudier, J. P. in Hearing by Eye (eds Campbell, R., Dodd, B. & Burnham, D. K.) 85–108 (Psychology Press, Hove, East Sussex, UK, 1998).

    Google Scholar 

  67. Vroomen, J., Bertelson, P. & De Gelder, B. The ventriloquist effect does not depend on the direction of automatic visual attention. Percept. Psychophys. 63, 651–659 (2001).

    CAS  PubMed  Google Scholar 

  68. Bertelson, P., Pavani, F., Ladavas, E., Vroomen, J. & De Gelder, B. Ventriloquism in patients with unilateral visual neglect. Neuropsychologia 38, 1634–1642 (2000).

    CAS  PubMed  Google Scholar 

  69. Bertelson, P., Vroomen, J., De Gelder, B. & Driver, J. The ventriloquist effect does not depend on the direction of deliberate visual attention. Percept. Psychophys. 62, 321–332 (2000).

    CAS  PubMed  Google Scholar 

  70. Shams, L., Kamitani, Y. & Shimojo, S. Illusions. What you see is what you hear. Nature 408, 788 (2000).

    CAS  PubMed  Google Scholar 

  71. Watanabe, K. & Shimojo, S. When sound affects vision: effects of auditory grouping on visual motion perception. Psychol. Sci. 12, 109–116 (2001).

    CAS  PubMed  Google Scholar 

  72. Loe, P. R. & Benevento, L. A. Auditory–visual interaction in single units in the orbito-insular cortex of the cat. Electroencephalogr. Clin. Neurophysiol. 26, 395–398 (1969).

    CAS  PubMed  Google Scholar 

  73. Benevento, L. A., Fallon, J., Davis, B. J. & Rezak, M. Auditory–visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey. Exp. Neurol. 57, 849–872 (1977).

    CAS  PubMed  Google Scholar 

  74. Meredith, M. A., Nemitz, J. W. & Stein, B. E. Determinants of multisensory integration in superior colliculus neurons. I. Temporal factors. J. Neurosci. 7, 3215–3229 (1987).

    CAS  PubMed  Google Scholar 

  75. Calvert, G. A. et al. Activation of auditory cortex during silent lipreading. Science 276, 593–596 (1997).

    CAS  PubMed  Google Scholar 

  76. Macaluso, E., Frith, C. D. & Driver, J. Modulation of human visual cortex by crossmodal spatial attention. Science 289, 1206–1208 (2000).

    CAS  PubMed  Google Scholar 

  77. De Gelder, B., Bocker, K. B., Tuomainen, J., Hensen, M. & Vroomen, J. The combined perception of emotion from voice and face: early interaction revealed by human electric brain responses. Neurosci. Lett. 260, 133–136 (1999).

    CAS  PubMed  Google Scholar 

  78. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    CAS  PubMed  Google Scholar 

  79. Goodale, M. A. & Haffenden, A. Frames of reference for perception and action in the human visual system. Neurosci. Biobehav. Rev. 22, 161–172 (1998).

    CAS  PubMed  Google Scholar 

  80. Marotta, J. J., DeSouza, J. F., Haffenden, A. M. & Goodale, M. A. Does a monocularly presented size-contrast illusion influence grip aperture? Neuropsychologia 36, 491–497 (1998).

    CAS  PubMed  Google Scholar 

  81. Plodowski, A. & Jackson, S. R. Vision: getting to grips with the Ebbinghaus illusion. Curr. Biol. 11, R304–R306 (2001).

    CAS  PubMed  Google Scholar 

  82. Chance, B. Ophthalmology (Hafner, New York, 1962).

    Google Scholar 

  83. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    CAS  Google Scholar 

  84. Livingstone, M. & Hubel, D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).

    CAS  PubMed  Google Scholar 

  85. Ramachandran, V. S. & Gregory, R. L. Does colour provide an input to human motion perception? Nature 275, 55–56 (1978).

    CAS  PubMed  Google Scholar 

  86. Lu, Z. L., Lesmes, L. A. & Sperling, G. Perceptual motion standstill in rapidly moving chromatic displays. Proc. Natl Acad. Sci. USA 96, 15374–15379 (1999).

    CAS  PubMed  Google Scholar 

  87. Thiele, A., Dobkins, K. R. & Albright, T. D. Neural correlates of chromatic motion perception. Neuron 32, 351–358 (2001).

    CAS  PubMed  Google Scholar 

  88. Purkinje, J. E. Beitrage zur naheren Kenntniss des Schwindels aus heautognostischen Daten. Medicinische Jahrbucher des kaiserlich-koniglichen osterreichischen Staates 6, 79–125 (1820).

    Google Scholar 

  89. Addams, R. An account of a peculiar optical phenomenon seen after having looked at a moving body, etc. Lond. Edinb. Phil. Mag. J. Sci. 5, 373–374 (1834).

    Google Scholar 

  90. Wheatstone, C. On some remarkable, and hitherto unresolved, phenomena of binocular vision. Phil. Trans. R. Soc. Lond. 128, 371–394 (1838).

    Google Scholar 

  91. Steinman, R. M., Pizlo, Z. & Pizlo, F. J. Phi is not beta, and why Wertheimer's discovery launched the Gestalt revolution. Vision Res. 40, 2257–2264 (2000).

    CAS  PubMed  Google Scholar 

  92. Rubin, E. Synoplevede Figurer (Gyldendalske, Copenhagen, 1915).

    Google Scholar 

  93. Frohlich, F. W. Uber die Messung der Empfindungszeit. Zeitschrift für Sinnesphysiologie 54, 58–78 (1923).

    Google Scholar 

  94. Julesz, B. Binocular depth perception of computer-generated patterns. Bell System Tech. J. 39, 1125–1162 (1960).

    Google Scholar 

  95. Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967).

    CAS  Google Scholar 

  96. Belliveau, J. W., Cohen, M. S., Weisskoff, R. M., Buchbinder, B. R. & Rosen, B. R. Functional studies of the human brain using high-speed magnetic resonance imaging. J. Neuroimaging 1, 36–41 (1991).

    CAS  PubMed  Google Scholar 

  97. Duncan, R. O., Albright, T. D. & Stoner, G. R. Occlusion and the interpretation of visual motion: perceptual and neuronal effects of context. J. Neurosci. 20, 5885–5897 (2000).

    CAS  PubMed  Google Scholar 

  98. He, S. & MacLeod, D. I. Orientation-selective adaptation and tilt after-effect from invisible patterns. Nature 411, 473–476 (2001).

    CAS  PubMed  Google Scholar 

  99. Bradley, D. R. & Petry, H. M. Organizational determinants of subjective contour: the subjective Necker cube. Am. J. Psychol. 90, 253–262 (1977).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank my colleagues at the Salk Institute and the University of California at San Diego; in particular, G. Stoner, A. Holcombe, B. Krekelberg, S. Anstis, M. van der Smagt and T. Sejnowski.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Amazing Optical Illusions

Illusionworks

MIT Encyclopedia of Cognitive Sciences

high-level vision

illusions

SandlotScience

The Waterfall Illusion

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eagleman, D. Visual illusions and neurobiology. Nat Rev Neurosci 2, 920–926 (2001). https://doi.org/10.1038/35104092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35104092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing