Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The cognitive neuroscience og remembering

Key Points

  • Retrieving a memory seems to involve a set of distinct processes, with different neural substrates, that are coordinated to orchestrate the act of remembering. Recent advances in cognitive science, including brain-imaging techniques, have provided evidence for the nature of these processes.

  • Frontal cortical areas are central to the retrieval attempt. Anterior frontal-polar cortex is activated specifically during retrieval attempts for both verbal and non-verbal material, whereas more posterior frontal cortex is activated during both retrieval and processing of verbal material. Posterior frontal activation becomes stronger as remembering becomes more difficult. Overall, frontal cortex seems to be important for strategic aspects of retrieval.

  • A network of left-sided cortical areas, including left parietal cortex, shows activity that correlates with retrieval success. This may act as a signal to inform a person that information is from the past rather than the present.

  • The content of a memory is probably encoded as a 'reactivation' of those areas of cortex that are activated by sensory perception in the same modality, although the systems used for perception and retrieval do not completely overlap. It is unclear to what extent early sensory cortices are activated by retrieval.

  • Retrieval may be initiated when top–down modulation from frontal cortex interacts with sensory representation of cues to trigger reactivation of the cortical networks that represent a memory, with a network including left parietal cortex possibly signalling that the representation is old. A sense of familiarity may occur when frontal and parietal regions are activated without detailed reactivation of sensory areas, whereas detailed recollection may rely on more extensive activity to represent the content of the memory.

Abstract

Remembering draws on a diverse array of cognitive processes to construct a representation that is experienced as a copy of the original past. The results of brain-imaging, neuropsychological and physiological studies indicate that distinct neocortical regions might interact with medial temporal lobe structures to reinstate a memory. Frontal regions mediate the strategic retrieval attempt and monitor its outcome, with dissociated frontal regions making functionally separate contributions to retrieval. Parietal and frontal regions might supply a signal that information is old during the process of retrieval, allowing us to perceive that reconstructed representations are memories, rather than the products of new stimuli in the environment. Domain-specific cortical regions are reactivated during vivid remembering and contribute to the contents of a memory. Here, we describe how these regions interact to orchestrate an act of remembering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple, functionally distinct frontal regions are active during retrieval attempt and monitoring.
Figure 2: Parietal cortex is associated with retrieval success.
Figure 3: Subsets of regions activated during perception are reactivated during vivid remembering.
Figure 4: Paired-associate recall tasks in monkeys might indicate single-unit correlates of reactivation.
Figure 5: Regions of visual cortex that respond preferentially to different kinds of objects during perception show similar preference during imagery of those objects.

Similar content being viewed by others

References

  1. James, W. The Principles of Psychology (Henry Holt and Co., New York, 1890).Although an older text, this classic is still the seminal text of psychology and should be read. Chapters 16 on memory and 18 on imagination set the foundation for the modern cognitive neuroscience of remembering.

    Google Scholar 

  2. Johnson, M. K. MEM: mechanisms of recollection. J. Cogn. Neurosci. 4, 268–280 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Rugg, M. D. & Wilding, E. L. Retrieval processing and episodic memory. Trends Cogn. Sci. 4, 108–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Tulving, E. Elements of Episodic Memory (Oxford Univ. Press, New York, 1983).A comprehensive cognitive framework for understanding processes that are associated with remembering.

    Google Scholar 

  5. Gillund, G. & Shiffrin, R. M. A retrieval model for both recognition and recall. Psychol. Rev. 91, 1–67 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Ratcliff, R. & McKoon, G. in Varieties of Memory and Consciousness: Essays in Honour of Endel Tulving (eds Roediger III, H. L. & Craik, F. I. M.) 73–92 (Lawrence Erlbaum Assoc., Hillsdale, New Jersey, 1989).

    Google Scholar 

  7. Moscovitch, M. in Varieties of Memory and Consciousness: Essays in Honour of Endel Tulving (eds Roediger III, H. L. & Craik, F. I. M.) 133–160 (Lawrance Erlbaum Assoc., Hillsdale, New Jersey, 1989).

    Google Scholar 

  8. Mayes, A. R. in Memory: Systems, Process, or Function? (eds Foster, J. K. & Jelicic, M.) 130–161 (Oxford Univ. Press, Oxford, 1999).

    Book  Google Scholar 

  9. Burgess, P. W. & Shallice, T. Confabulation and the control of recollection. Memory 4, 359–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Gershberg, F. B. & Shimamura, A. P. Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia 33, 1305–1333 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Incisa Della Rocchetta, A. & Milner, B. Strategic search and retrieval inhibition: the role of the frontal lobes. Neuropsychologia 31, 503–524 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Janowsky, J. S., Shimamura, A. P. & Squire, L. R. Memory and metamemory: comparisons between patients with frontal lobe lesions and amnesic patients. Psychobiology 17, 3–11 (1989).

    Google Scholar 

  13. Jetter, W., Poser, U., Freeman, J. R. B. & Markowitsch, H. J. A verbal long term memory deficit in frontal lobe damaged patients. Cortex 22, 229–242 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Milner, B., Petrides, M. & Smith, M. L. Frontal lobes and the temporal organization of memory. Hum. Neurobiol. 4, 137–142 (1985).A seminal analysis of memory impairments in patients with frontal lobe lesions. Patients were found to be impaired on complex retrieval tasks involving judgements of order and their frequency of occurrence.

    CAS  PubMed  Google Scholar 

  15. Schacter, D. L. Memory, amnesia, and frontal lobe dysfunction. Psychobiology 15, 21–36 (1987).

    Google Scholar 

  16. Shimamura, A. P., Janowsky, J. S. & Squire, L. R. in Frontal Lobe Function and Dysfunction (eds Levin, H., Eisenberg, H. M. & Benton, A. L.) 173–195 (Oxford Univ. Press, New York, 1991).

    Google Scholar 

  17. Wheeler, M. A., Stuss, D. T. & Tulving, E. Frontal lobe damage produces episodic memory impairment. J. Int. Neuropsychol. Soc. 1, 525–536 (1995).A meta-analysis of 32 separate studies that examined whether patients with frontal lesions show memory impairments. Contrary to conventional wisdom at the time, this extensive analysis showed that patients with frontal lesions exhibited memory difficulties even for tests based on simple recognition. The size of the impairment was greatest for recall tests.

    Article  CAS  PubMed  Google Scholar 

  18. Schacter, D. L., Curran, T., Galluccio, L., Milberg, W. P. & Bates, J. F. False recognition and the right frontal lobe: a case study. Neuropsychologia 34, 793–808 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Curran, T., Schacter, D. L., Norman, K. A. & Galluccio, L. False recognition after a right frontal lobe infarction: memory for general and specific information. Neuropsychologia 35, 1035–1049 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Buckner, R. L. et al. Functional anatomical studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Squire, L. R. et al. Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc. Natl Acad. Sci. USA 89, 1837–1841 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Schacter, D. L., Alpert, N. M., Savage, C. R., Rauch, S. L. & Albert, M. S. Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc. Natl Acad. Sci. USA 93, 321–325 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Petrides, M., Alivisatos, B. & Evans, A. C. Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc. Natl Acad. Sci. USA 92, 5803–5807 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Andreasen, N. C. et al. Short-term and long-term verbal memory: a positron emission tomography study. Proc. Natl Acad. Sci. USA 92, 5111–5115 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Fletcher, P. C. et al. Brain systems for encoding and retrieval of auditory–verbal memory: an in vivo study in humans. Brain 118, 401–416 (1995).

    Article  PubMed  Google Scholar 

  26. Haxby, J. V. et al. Face encoding and recognition in the human brain. Proc. Natl Acad. Sci. USA 93, 922–927 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Tulving, E. et al. Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition. Proc. Natl Acad. Sci. USA 91, 2012–2015 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Henson, R. N., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. J. Recollection and familiarity in recognition memory: an event-related functional magnetic resonance imaging study. J. Neurosci. 19, 3962–3972 (1999).An event-related fMRI study that shows clear correlates of successful retrieval. This study is particularly noteworthy in that several previous studies failed to find such effects, probably because of methodological limitations.

    Article  CAS  PubMed  Google Scholar 

  29. Nyberg, L. et al. Functional brain maps of retrieval mode and recovery of episodic information. Neuroreport 7, 249–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Roland, P. E. & Gulyás, B. Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography. Cereb. Cortex 5, 79–93 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Buckner, R. L. Beyond HERA: contributions of specific prefrontal brain areas to long-term memory retrieval. Psychon. Bull. Rev. 3, 149–158 (1996).A review of imaging studies of memory retrieval that highlights the dissociation between posterior and anterior left frontal regions associated with verbal retrieval, and between left and right posterior regions associated with verbal and non-verbal retrieval, respectively.

    Article  CAS  PubMed  Google Scholar 

  32. Fletcher, P. C., Frith, C. D. & Rugg, M. D. The functional neuroanatomy of episodic memory. Trends Neurosci. 20, 213–218 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Nyberg, L. Mapping episodic memory. Behav. Brain Res. 90, 107–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Tulving, E., Kapur, S., Craik, F. I. M., Moscovitch, M. & Houle, S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc. Natl Acad. Sci. USA 91, 2016–2020 (1994).A landmark paper for the field because it highlighted frontal contributions to memory processes including retrieval.

    Article  CAS  PubMed  Google Scholar 

  35. Wheeler, M. A., Stuss, D. T. & Tulving, E. Toward a theory of episodic memory: the frontal lobes and autonoetic consciousness. Psychol. Bull. 121, 331–354 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Desgranges, B., Baron, J. C. & Eustache, F. The functional neuroanatomy of episodic memory: the role of the frontal lobes, the hippocampal formation, and other areas. Neuroimage 8, 198–213 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Demb, J. B. et al. Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. J. Neurosci. 15, 5870–5878 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Gabrieli, J. D. E., Poldrack, R. A. & Desmond, D. E. The role of left prefrontal cortex in language and memory. Proc. Natl Acad. Sci. USA 95, 906–913 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Kapur, S. et al. The neural correlates of intentional learning of verbal materials: a PET study in humans. Cogn. Brain Res. 4, 243–249 (1996).

    Article  CAS  Google Scholar 

  40. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the processing of single words. J. Cogn. Neurosci. 1, 153–170 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Wise, R. et al. Distribution of cortical neural networks involved in word comprehension and word retrieval. Brain 114, 1803–1817 (1991).

    Article  PubMed  Google Scholar 

  42. Braver, T. S. et al. Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. Neuroimage 14, 48–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. McDermott, K. B., Buckner, R. L., Petersen, S. E., Kelley, W. M. & Sanders, A. L. Set- and code-specific activation in the frontal cortex: an fMRI study of encoding and retrieval of faces and words. J. Cogn. Neurosci. 11, 631–640 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Wagner, A. D. et al. Material-specific lateralization of prefrontal activation during episodic encoding and retrieval. Neuroreport 9, 3711–3717 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, A. C., Robbins, T. W., Pickard, J. D. & Owen, A. M. Asymmetric frontal activation during episodic memory: the effects of stimulus type on encoding and retrieval. Neuropsychologia 38, 677–692 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Buckner, R. L., Koutstaal, W., Schacter, D. L., Wagner, A. D. & Rosen, B. R. Functional-anatomic study of episodic retrieval using fMRI. I. Retrieval effort versus retrieval success. Neuroimage 7, 151–162 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Nolde, S. F., Johnson, M. K. & Raye, C. L. The role of prefrontal cortex during tests of episodic memory. Trends Cogn. Sci. 2, 399–406 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Buckner, R. L. et al. Functional-anatomic study of episodic retrieval. II. Selective averaging of event-related fMRI trials to test the retrieval success hypothesis. Neuroimage 7, 163–175 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Konishi, S., Wheeler, M. E., Donaldson, D. I. & Buckner, R. L. Neural correlates of episodic retrieval success. Neuroimage 12, 276–286 (2000).An event-related fMRI study that shows clear correlates of retrieval success.

    Article  CAS  PubMed  Google Scholar 

  50. Moscovitch, M. Memory and working-with-memory: a component process model based on modules and central systems. J. Cogn. Neurosci. 4, 257–267 (1992).An insightful theoretical discussion of cognitive neuroscience findings, relating strategic aspects of long-term retrieval to the online (working memory) demands that support these processes.

    Article  CAS  PubMed  Google Scholar 

  51. Buckner, R. L. & Tulving, E. in Handbook of Neuropsychology Vol. 10 (eds Boller, F. & Grafman, J.) 439–466 (Elsevier, Amsterdam, 1995).

    Google Scholar 

  52. Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. MacLeod, A. K., Buckner, R. L., Miezin, F. M., Petersen, S. E. & Raichle, M. E. Right anterior prefrontal cortex activation during semantic monitoring and working memory. Neuroimage 7, 41–48 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Wagner, A. D., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Prefrontal cortex and recognition memory: functional-MRI evidence for context-dependent retrieval processes. Brain 121, 1985–2002 (1998).This study shows that anterior frontal regions might be sensitive to subject expectations during retrieval tasks, and therefore indicates that their role extends to high-level monitoring and/or initiation of retrieval strategies.

    Article  PubMed  Google Scholar 

  55. Henson, R. N., Rugg, M. D., Shallice, T. & Dolan, R. J. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. J. Cogn. Neurosci. 12, 913–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Schacter, D. L., Buckner, R. L., Koutstaal, W., Dale, A. M. & Rosen, B. R. Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. Neuroimage 6, 259–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Düzel, E. et al. Task-related and item-related brain processes of memory retrieval. Proc. Natl Acad. Sci. USA 96, 1794–1799 (1999).

    Article  PubMed  Google Scholar 

  58. Rugg, M. D. & Allan, K. in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 521–537 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  59. Ranganath, C., Johnson, M. K. & D' Esposito, M. Left anterior prefrontal activation increases with demands to recall specific perceptual information. J. Neurosci. 20, RC108 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in man. Brain 114, 727–741 (1991).

    Article  PubMed  Google Scholar 

  61. Cohen, N. J. & Eichenbaum, H. Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  62. Corkin, S. Lasting consequences of bilateral medial temporal lobectomy: clinical course and experimental findings in H. M. Sem. Neurol. 4, 249–259 (1984).

    Article  Google Scholar 

  63. Squire, L. R. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231 (1992).An extremely thorough review of data that support a role for the medial temporal lobes in declarative memory function.

    Article  CAS  PubMed  Google Scholar 

  64. Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Nyberg, L. & Cabeza, R. in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 501–519 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  66. Schacter, D. L. & Wagner, A. D. Medial temporal lobe activations in fMRI and PET studies of episodic encoding and retrieval. Hippocampus 9, 7–24 (1999).A comprehensive review of neuroimaging findings that detect activation of the hippocampus during memory retrieval.

    Article  CAS  PubMed  Google Scholar 

  67. Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Nyberg, L., McIntosh, A. R., Houle, S., Nilsson, L.-G. & Tulving, E. Activation of medial temporal structures during episodic memory retrieval. Nature 380, 715–717 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y. & Engel, S. A. Remembering episodes: a selective role for the hippocampus during retrieval. Nature Neurosci. 3, 1149–1152 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Stark, C. E. & Squire, L. R. Functional magnetic resonance imaging (fMRI) activity in the hippocampal region during recognition memory. J. Neurosci. 20, 7776–7781 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Eichenbaum, H. A cortical–hippocampal system for declarative memory. Nature Rev. Neurosci. 1, 41–50 (2000).

    Article  CAS  Google Scholar 

  72. McClelland, J. L., McNaughton, B. L. & O' Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the success and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  73. O'Reilly, R. C. & Rudy, J. W. Computational principles of learning in the neocortex and hippocampus. Hippocampus 10, 389–397 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Habib, R. & Lepage, M. in Memory, Consciousness, and the Brain (ed. Tulving, E.) 265–277 (Psychology, Philadelphia, Pennsylvania, 1999).

    Google Scholar 

  76. Donaldson, D. I., Petersen, S. E. & Buckner, R. L. Dissociating memory retrieval processes using fMRI: evidence that priming does not support recognition memory. Neuron (in the press).

  77. McDermott, K. B., Jones, T. C., Petersen, S. E., Lageman, S. K. & Roediger III, H. L. Retrieval success is accompanied by enhanced activation in anterior prefrontal cortex during recognition memory: an event-related fMRI study. J. Cogn. Neurosci. 12, 965–976 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Sanders, A. L., Wheeler, M. E. & Buckner, R. L. Episodic recognition modulates frontal and parietal cortex activity. J. Cogn. Neurosci. (Suppl.), 50A (2000).

  79. Koutstaal, W. et al. Perceptual specificity in visual object priming: functional magnetic resonance imaging evidence for a laterality difference in fusiform cortex. Neuropsychologia 39, 184–199 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Wilding, E. L. & Rugg, M. D. An event-related potential study of recognition memory with and without retrieval of source. Brain 119, 889–905 (1996).A defining paper for ERP studies of memory retrieval. Dissociated components are identified that participate in early and late components of remembering.

    Article  PubMed  Google Scholar 

  81. Damasio, A. R. Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition 33, 25–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott–Raven, Philadelphia, Pennsylvania, 1997).

    Google Scholar 

  83. Hasegawa, I., Fukushima, T., Ihara, T. & Miyashita, Y. Callosal window between prefrontal cortices: cognitive interaction to retrieve long-term memory. Science 281, 814–818 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Kosslyn, S. M. Image and Brain: the Resolution of the Imagery Debate (MIT Press, Cambridge, Massachusetts, 1994).A comprehensive investigation of the cognitive neuroscience of visual mental imagery and its relation to visual perception.

    Google Scholar 

  85. Mesulam, M.-M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Fallgatter, A. J., Mueller, T. J. & Strik, W. K. Neurophysiological correlates of mental imagery in different sensory modalities. Int. J. Psychophysiol. 25, 145–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Farah, M. J. Psychophysical evidence for a shared representational medium for mental images and percepts. J. Exp. Psychol. Gen. 114, 91–103 (1985).

    Article  CAS  PubMed  Google Scholar 

  88. Knauff, M., Kassubek, J., Mulack, T. & Greenlee, M. W. Cortical activation evoked by visual mental imagery as measured by fMRI. Neuroreport 11, 3957–3962 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).A study of single-unit properties during retrieval in humans undergoing brain surgery. The results indicate that specific neurons in the medial temporal lobe selectively respond to the remembered stimulus.

    Article  CAS  PubMed  Google Scholar 

  90. Naya, Y., Yoshida, M. & Miyashita, Y. Backward spreading of memory-retrieval signal in the primate temporal cortex. Science 291, 661–664 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Nyberg, L., Habib, R., McIntosh, A. R. & Tulving, E. Reactivation of encoding-related brain activity during memory retrieval. Proc. Natl Acad. Sci. USA 97, 11120–11124 (2000).A demonstration, using PET, that auditory areas are reactivated during retrieval of auditory information. This study also shows that such reactivation might occur independently of whether subjects explicitly attempt to retrieve such information.

    Article  CAS  PubMed  Google Scholar 

  92. Roland, P. E. & Gulyás, B. Visual imagery and visual representation. Trends Neurosci. 17, 281–287 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Rösler, F., Heil, M. & Glowalla, U. Monitoring retrieval from long-term memory by slow event-related brain potentials. Psychophysiology 30, 170–182 (1993).

    Article  PubMed  Google Scholar 

  94. Sakai, K. & Miyashita, Y. Neural organization for the long-term memory of paired associates. Nature 354, 152–155 (1991).This seminal study reports the existence of 'pair-recall' neurons in inferotemporal cortex of the monkey, in which activity correlates with learned stimulus associates.

    Article  CAS  PubMed  Google Scholar 

  95. Wheeler, M. E., Petersen, S. E. & Buckner, R. L. Memory's echo: vivid remembering reactivates sensory-specific cortex. Proc. Natl Acad. Sci. USA 97, 11125–11129 (2000).An indication, using event-related fMRI, that auditory and visual areas are reactivated during retrieval of auditory and visual information, respectively.

    Article  CAS  PubMed  Google Scholar 

  96. Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the mind's ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci. 8, 29–46 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Semon, R. The Mneme (George Allen & Unwin, London, 1921).

    Google Scholar 

  98. Blaxton, T. A. Investigating dissociations among memory measures: support for a transfer-appropriate processing framework. J. Exp. Psychol. Learn. Mem. Cogn 15, 657–668 (1989).

    Article  Google Scholar 

  99. Morris, C. D., Bransford, J. P. & Franks, J. J. Levels of processing versus transfer appropriate processing. J. Verb. Learn. Verb. Behav. 16, 519–533 (1977).

    Article  Google Scholar 

  100. Roediger, H. L. I., Weldon, M. S. & Challis, B. H. in Varieties of Memory and Consciousness: Essays in Honour of Endel Tulving (eds Roediger III, H. L. & Craik, F. I. M.) 3–41 (Lawrance Erlbaum Assoc., Hillsdale, New Jersey, 1989).

    Google Scholar 

  101. Penfield, W. & Perot, P. The brain's record of auditory and visual experience. Brain 86, 595–696 (1963).

    Article  CAS  PubMed  Google Scholar 

  102. Bancaud, J., Brunet-Bourgin, F., Chauvel, P. & Halgren, E. Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy. Brain 117, 71–90 (1994).

    Article  PubMed  Google Scholar 

  103. Halgren, E., Walter, R. D., Cherlow, D. G. & Crandall, P. H. Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain 101, 83–117 (1978).

    Article  CAS  PubMed  Google Scholar 

  104. Shepard, R. N. The mental image. Am. Psychol. February, 125–137 (1978).A thoughtful discussion of how memory images might be represented within cognitive systems.

  105. Paivio, A. Mental Representations: a Dual Coding Approach (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  106. Kosslyn, S. M. Image and Mind (Harvard Univ. Press, Cambridge, Massachusetts, 1980).

    Google Scholar 

  107. DeRenzi, E. & Spinnler, H. Impaired performance on color tasks in patients with hemispheric lesions. Cortex 3, 194–217 (1967).

    Article  Google Scholar 

  108. Farah, M. J. in Handbook of Neuropsychology Vol. 2 (eds Boller, F. & Grafman, J.) 395–413 (Elsevier, Amsterdam, 1989).A comprehensive review of neuropsychological case studies and other data methods, suggesting that imagery relies on separable subsystems that provide distinct forms of information during imagery and remembering.

    Google Scholar 

  109. Farah, M. J., Hammond, K. M., Levine, D. N. & Calvanio, R. Visual and spatial mental imagery: dissociable systems of representation. Cogn. Psychol. 20, 439–462 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Farah, M. J., Levine, D. N. & Calvanio, R. A case study of mental imagery deficit. Brain Cogn 8, 147–164 (1988).

    Article  CAS  PubMed  Google Scholar 

  111. Levine, D. N., Warach, J. & Farah, M. J. Two visual systems in mental imagery: dissociation of 'What' and 'Where' in imagery disorders are due to bilateral cerebral lesions. Neurology 35, 1010–1018 (1985).

    Article  CAS  PubMed  Google Scholar 

  112. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).A paper detailing a wealth of information on the functional hierarchical organization of visual, auditory, somatosensory and motor cortex in the macaque monkey.

    Article  CAS  PubMed  Google Scholar 

  113. Ungerleider, L. G. & Mishkin, M. in Analysis of Visual Behavior (eds Ingle, D. G., Goodale, M. A. & Mansfield, R. J. Q.) 549–586 (MIT Press, Cambridge, Massachusetts, 1982).

    Google Scholar 

  114. Farah, M. J. The neurological basis of mental imagery: a componential analysis. Cognition 18, 245–272 (1984).

    Article  CAS  PubMed  Google Scholar 

  115. Bartolomeo, P. et al. Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia 36, 239–249 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Berhrmann, M., Winocur, G. & Moscovitch, M. Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature 359, 636–637 (1992).A case study of a patient (C.K.), who shows a remarkable dissociation between visual perception and imagery abilities. C.K. can draw objects from memory but cannot identify his own drawings at a later time.

    Article  Google Scholar 

  117. Servos, P. & Goodale, M. A. Preserved visual imagery in visual form agnosia. Neuropsychologia 33, 1383–1394 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Jankowiak, J., Kinsbourne, M., Shalev, R. S. & Bachman, D. I. Preserved visual imagery and categorization in a case of associative visual agnosia. J. Cogn. Neurosci. 4, 119–131 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Farah, M. J., Péronnet, F., Gonon, M. A. & Giard, M. H. Electrophysiological evidence for a shared representational medium for visual images and visual percepts. J. Exp. Psychol. Gen. 117, 248–257 (1988).

    Article  CAS  PubMed  Google Scholar 

  120. Ranganath, C. & Paller, K. A. Neural correlates of memory retrieval and evaluation. Cogn. Brain Res. 9, 209–222 (2000).

    Article  CAS  Google Scholar 

  121. Rösler, F., Heil, M. & Hennighausen, E. Distinct cortical activation patterns during long-term memory retrieval of verbal, spatial, and color information. J. Cogn. Neurosci. 7, 51–65 (1995).An ERP study showing differences during the retrieval of distinct forms of information. The paper uses a clever item-association paradigm to derive these results.

    Article  PubMed  Google Scholar 

  122. Buckner, R. L., Raichle, M. E., Miezin, F. M. & Petersen, S. E. Functional anatomic studies of memory retrieval for auditory words and visual pictures. J. Neurosci. 16, 6219–6235 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Chen, W. et al. Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport 9, 3669–3674 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. D'Esposito, M. et al. A functional MRI study of mental image generation. Neuropsychologia 35, 725–730 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Goebel, R., Khorram-Sefat, D., Muckli, L., Hacker, H. & Singer, W. The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur. J. Neurosci. 10, 1563–1573 (1998).

    Article  CAS  PubMed  Google Scholar 

  126. Goldenberg, G. et al. Regional cerebral blood flow patterns in visual imagery. Neuropsychologia 27, 641–664 (1989).

    Article  CAS  PubMed  Google Scholar 

  127. Ishai, A., Ungerleider, L. G. & Haxby, J. V. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Klein, I., Paradis, A.-L., Poline, J.-B., Kosslyn, S. M. & Le Bihan, D. Transient activity in the human calcarine cortex during visual-mental imagery: an event-related fMRI study. J. Cogn. Neurosci. 12 (Suppl. 2), 15–23 (2000).

    Article  PubMed  Google Scholar 

  129. Köhler, S., Moscovitch, M., Winocur, G., Houle, S. & McIntosh, A. R. Networks of domain-specific and general regions involved in episodic memory for spatial location and object identity. Neuropsychologia 36, 129–142 (1998).

    Article  PubMed  Google Scholar 

  130. Kosslyn, S. M. et al. Visual mental imagery activates topographically organized visual cortex: PET investigations. J. Cogn. Neurosci. 5, 263–287 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Kosslyn, S. M., Thompson, W. L., Kim, I. J. & Alpert, N. M. Topographical representations of mental images in primary visual cortex. Nature 378, 496–498 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Mellet, E. et al. Functional anatomy of spatial mental imagery generated from verbal instructions. J. Neurosci. 16, 6504–6512 (1996).

    Article  CAS  PubMed  Google Scholar 

  133. Mellet, E. et al. Functional anatomy of high-resolution visual mental imagery. J. Cogn. Neurosci. 12, 98–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. O'Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).A clear example of domain specificity in reactivation of retrieval content. Fusiform and parahippocampal regions that show preferential activation during perception of faces and buildings, show similar preferential activity during image-based retrieval of faces and buildings.

    Article  CAS  PubMed  Google Scholar 

  135. Owen, A. M., Milner, B., Petrides, M. & Evans, A. C. Memory for object features versus memory for object location: a positon-emission tomography study of encoding and retrieval processes. Proc. Natl Acad. Sci. USA 93, 9212–9217 (1996).

    Article  CAS  PubMed  Google Scholar 

  136. McIntosh, A. R., Cabeza, R. E. & Lobaugh, N. J. Analysis of neural interactions explains the activation of occipital cortex by an auditory stimulus. J. Neurophysiol. 80, 2790–2796 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex 9, 697–704 (1999).

    Article  CAS  PubMed  Google Scholar 

  138. Rosen, A. C., Vaidya, C. & Gabrieli, J. D. E. Reactivation of encoding context during memory retrieval: an fMRI study. Soc. Neurosci. Abstr. 30, 812 (2000).

    Google Scholar 

  139. Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L. & Ungerleider, L. G. Discrete cortical regions associated with knowledge of color and knowledge of action. Science 270, 102–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. Nyberg, L. et al. Reactivation of motor brain areas during explicit memory for actions. Neuroimage 14, 521–528 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Naya, Y., Sakai, K. & Miyashita, Y. Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc. Natl Acad. Sci. USA 93, 2664–2669 (1996).

    Article  CAS  PubMed  Google Scholar 

  142. Erickson, C. A. & Desimone, R. Responses of macaque perirhinal neurons during and after visual stimulus association learning. J. Neurosci. 19, 10404–10416 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Gochin, P. M., Colombo, M., Dorfman, G. A., Gerstein, G. L. & Gross, C. G. Neural ensemble coding in inferior temporal cortex. J. Neurophysiol. 71, 2325–2337 (1994).

    Article  CAS  PubMed  Google Scholar 

  144. Sobotka, S. & Ringo, J. L. Investigation of long term recognition and association memory in unit responses from inferotemporal cortex. Exp. Brain Res. 96, 28–38 (1993).

    Article  CAS  PubMed  Google Scholar 

  145. Le Bihan, D. et al. Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proc. Natl Acad. Sci. USA 90, 11802–11805 (1993).

    Article  CAS  PubMed  Google Scholar 

  146. Kosslyn, S. M. et al. The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284, 167–170 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Sakai, K. & Miyashita, Y. Visual imagery: an interaction between memory retrieval and focal attention. Trends Neurosci. 17, 287–289 (1994).

    Article  CAS  PubMed  Google Scholar 

  148. Hebb, D. O. Concerning imagery. Psychol. Rev. 75, 466–477 (1968).

    Article  CAS  PubMed  Google Scholar 

  149. Thompson, W. L., Kosslyn, S. M., Sukel, K. E. & Alpert, N. M. Mental imagery of high- and low-resolution gratings activates area 17. Neuroimage 14, 454–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Kawashima, R., O'Sullivan, B. T. & Roland, P. E. Positron-emission tomography studies of cross-modality inhibition in selective attention tasks: closing the 'mind's eye'. Proc. Natl Acad. Sci. USA 92, 5969–5972 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).Among the first PET studies of attention. This article extensively covers a series of selective-attention conditions that show domain-specific modulation of visual areas.

    Article  CAS  PubMed  Google Scholar 

  152. Kanwisher, N. & Wojciulik, E. Visual attention: insights from brain imaging. Nature Rev. Neurosci. 1, 91–100 (2000).

    Article  CAS  Google Scholar 

  153. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R. & Ungerleider, L. G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Shulman, G. L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480–9496 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Shulman, G. L. et al. Top–down modulation of early visual cortex. Cereb. Cortex 7, 193–206 (1997).

    Article  CAS  PubMed  Google Scholar 

  156. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl Acad. Sci. USA 96, 3314–3319 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Levine, B. et al. Episodic memory and the self in a case of isolated retrograde amnesia. Brain 121, 1951–1973 (1998).

    Article  PubMed  Google Scholar 

  158. Nyberg, L. et al. General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc. Natl Acad. Sci. USA 93, 11280–11285 (1996).

    Article  CAS  PubMed  Google Scholar 

  159. Cabeza, R. et al. Brain regions differentially involved in remembering what and when: a PET study. Neuron 19, 863–870 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Phelps, E. A. et al. Activation of the left amygdala to a cognitive representation of fear. Nature Neurosci. 4, 437–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Gardiner, J. M. & Richardson-Klavehn, A. in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 229–244 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  162. Tulving, E. Memory and consciousness. Can. Psychol. 26, 1–12 (1985).

    Article  Google Scholar 

  163. Kelley, C. M. & Jacoby, L. L. in The Oxford Handbook of Memory (eds Tulving, E. & Craik, F. I. M.) 215–228 (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  164. Yonelinas, A. P. Components of episodic memory: the contribution of recollection and familiarity. Phil. Trans. R. Soc. Lond. B (in the press).A review of behavioural, neuropsychological and neuroimaging results indicating that recollection and familiarity make distinct contributions to retrieval.

  165. Jack, C. R. J. et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52, 1397–1403 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Jack, C. R. J. et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology 55, 484–489 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Bookheimer, S. Y. et al. Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343, 502–503 (2000).

    Article  Google Scholar 

  168. Donaldson, D. I., Petersen, S. E., Ollinger, J. M. & Buckner, R. L. Dissociating state and item components of recognition memory using fMRI. Neuroimage 13, 129–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  169. Allan, K., Wilding, E. L. & Rugg, M. D. Electrophysiological evidence for dissociable processes contributing to recollection. Acta Psychol. 98, 231–252 (1998).

    Article  CAS  Google Scholar 

  170. Senkfor, A. J. & Van Petten, C. Who said what? An event-related potential investigation of source and item memory. J. Exp. Psychol. Learn. Mem. Cogn 24, 1005–1025 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Nyberg, L. et al. Large scale neurocognitive networks underlying episodic memory. J. Cogn. Neurosci. 12, 163–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  172. Köhler, S., McIntosh, A. R., Moscovitch, M. & Winocur, G. Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. Cereb. Cortex 8, 451–461 (1998).

    Article  PubMed  Google Scholar 

  173. Dale, A. M. et al. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Heinze, H. J. et al. Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372, 543–546 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Snyder, A. Z., Abdullaev, Y. G., Posner, M. I. & Raichle, M. E. Scalp electrical potentials reflect regional cerebral blood flow responses during processing of written words. Proc. Natl Acad. Sci. USA 92, 1689–1693 (1995).

    Article  CAS  PubMed  Google Scholar 

  176. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  178. Buckner, R. L. & Koutstaal, W. Functional neuroimaging studies of encoding, priming, and explicit memory retrieval. Proc. Natl Acad. Sci. USA 95, 891–898 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Buckner, R. L., Raichle, M. E. & Petersen, S. E. Dissociation of human prefrontal cortical areas across different speech production tasks and gender groups. J. Neurophysiol. 74, 2163–2173 (1995).

    Article  CAS  PubMed  Google Scholar 

  180. Poldrack, R. A. et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10, 15–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Rugg, M. D. et al. Dissociation of the neural correlates of implicit and explicit memory. Nature 392, 595–598 (1998).

    Article  CAS  PubMed  Google Scholar 

  182. Rugg, M.D. et al. Differential activation of the prefrontal cortex in successful and unsuccessful memory retrieval. Brain 119, 2073–2083 (1996).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Jacoby and H. Roediger for pointing us to relevant literature. The Howard Hughes Medical Institute, the James S. McDonnell Foundation, the Alzheimer's Association of America, and the National Institutes of Health provided support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Alzheimer's disease

MIT ENCYCLOPEDIA OF COGNITIVE SCIENCES

Positron emission tomography

Magnetic resonance imaging

Wilder Penfield

Imagery

Glossary

HAEMODYNAMIC IMAGING METHODS

Techniques used to measure neural activity by monitoring changes in regional blood flow. Positron emission tomography (PET) measures blood flow directly. Functional magnetic resonance imaging (fMRI) measures oxygen concentration in the blood that relates to blood flow. PET and fMRI have good spatial resolution but relatively poor temporal resolution.

BRODMANN AREAS

(BA). Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions based on cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 44, BA 45, BA 47 and others). Modern derivatives of his maps are commonly used as the reference system for discussion of brain-imaging findings.

MEMORY TESTS

Formats used to test explicit retrieval in the laboratory vary in relation to how much information is provided to aid retrieval. In free recall, items are recalled in an open fashion (“Recall the words from the list.”). In cued-recall, item-by-item aids are given as cues (“Recall the word that began with cou.”). In recognition, the full item is given and the test is to decide whether the item was studied (“Was the word ketchup presented earlier?”).

EVENT-RELATED FMRI

A variant of functional magnetic resonance imaging (fMRI) methods that allows neural correlates of individual trials or classes of trials to be isolated and compared.

ELECTROENCEPHALOGRAPHY

(EEG). A technique used to measure neural activity by monitoring electrical signals from the brain that reach the scalp. EEG has good temporal resolution but relatively poor spatial resolution.

SOURCE MEMORY TEST

A form of explicit retrieval test in which a specific attribute of the study episode is queried (“Was the dog studied as a sound or picture?”).

SINGLE-UNIT RECORDING

A method used to measure the activity of individual neurons in awake, behaving animals. This method has excellent spatial and temporal resolution, but can only survey activity over small numbers of neurons.

PAIRED-ASSOCIATE RECALL

A form of retrieval test in which item pairs are studied (“dog–cat”). At test, one member of the pair is given to cue retrieval of the other (“dog”).

RECOLLECTION AND FAMILIARITY

Theoretical memory processes that are believed to contribute to explicit retrieval. Familiarity refers to the general sense that something is familiar (old). Recollection refers to retrieval of specific details and the context associated with an earlier episode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckner, R., Wheeler, M. The cognitive neuroscience og remembering. Nat Rev Neurosci 2, 624–634 (2001). https://doi.org/10.1038/35090048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35090048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing