Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genome maintenance mechanisms for preventing cancer

Abstract

The early notion that cancer is caused by mutations in genes critical for the control of cell growth implied that genome stability is important for preventing oncogenesis. During the past decade, knowledge about the mechanisms by which genes erode and the molecular machinery designed to counteract this time-dependent genetic degeneration has increased markedly. At the same time, it has become apparent that inherited or acquired deficiencies in genome maintenance systems contribute significantly to the onset of cancer. This review summarizes the main DNA caretaking systems and their impact on genome stability and carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA damage, repair mechanisms and consequences.
Figure 2: Mechanisms of replicational bypass of DNA lesions.

Similar content being viewed by others

References

  1. Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  Google Scholar 

  2. Cadet, J., Berger, M., Douki, T. & Ravanat, J. L. Oxidative damage to DNA: formation, measurement, and biological significance. Rev. Physiol. Biochem. Pharmacol. 131, 1–87 (1997).

    CAS  PubMed  Google Scholar 

  3. Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Yamaizumi, M. & Sugano, T. UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9, 2775–2784 (1994).

    CAS  PubMed  Google Scholar 

  6. Goodman, M. F. & Tippin, B. Sloppier copier DNA polymerases involved in genome repair. Curr. Opin. Genet. Dev. 10, 162–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Lawrence, C. The Rad6 DNA repair pathway in Saccharomyces cerevisiae: what does it do and how does it do it? BioEssays 16, 253–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Johnson, R. E., Kondratick, C. M., Prakash, S. & Prakash, L. hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263–265 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Friedberg, E. C., Walker, G. C. & Siede, W. DNA Repair and Mutagenesis (ASM Press, Washington DC, 1995).

    Google Scholar 

  13. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Takata, M. et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17, 5497–5508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tornaletti, S. & Hanawalt, P. C. Effect of DNA lesions on transcription elongation. Biochimie 81, 139–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Batty, D. P. & Wood, R. D. Damage recognition in nucleotide excision repair of DNA. Gene 241, 193–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bootsma, D., Kraemer, K. H., Cleaver, J. & Hoeijmakers, J. H. J. in The Metabolic and Molecular Basis of Inherited Disease Vol. 1 (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 677–703 (McGraw-Hill, New York, 2001).

    Google Scholar 

  19. Lehmann, A. R. The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15, 15–23 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Vermeulen, W. et al. A temperature-sensitive disorder in basal transcription and DNA repair in humans. Nature Genet. 27, 299–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. de Boer, J. & Hoeijmakers, J. H. Cancer from the outside, aging from the inside: mouse models to study the consequences of defective nucleotide excision repair. Biochimie 81, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Wyatt, M. D., Allan, J. M., Lau, A. Y., Ellenberger, T. E. & Samson, L. D. 3-methyladenine DNA glycosylases: structure, function, and biological importance. BioEssays 21, 668–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Mol, C. D., Parikh, S. S., Putnam, C. D., Lo, T. P. & Tainer, J. A. DNA repair mechanisms for the recognition and removal of damaged DNA bases. Annu. Rev. Biophys. Biomol. Struct. 28, 101–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Bruner, S. D., Norman, D. P. & Verdine, G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 403, 859–866 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Wilson, D. M. & Thompson, L. H. Life without DNA repair. Proc. Natl Acad. Sci. USA 94, 12754–12757 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Divine, K. K. et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat. Res. 461, 273–278 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Rotman, G. & Shiloh, Y. ATM: from gene to function. Hum. Mol. Genet. 7, 1555–1563 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Paull, T. T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Petrini, J. H. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12, 293–296 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Digweed, M., Reis, A. & Sperling, K. Nijmegen breakage syndrome: consequences of defective DNA double strand break repair. BioEssays 21, 649–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Riballo, E. et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 9, 699–702 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Van Gent, D. C., Hoeijmakers, J. H. J. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nature Rev. Genet. 2, 196–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Gurley, K. E. & Kemp, C. J. Synthetic lethality between mutation in Atm and DNA-PKcs during murine embryogenesis. Curr. Biol. 11, 191–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Jasin, M. Chromosome breaks and genomic instability. Cancer Invest. 18, 78–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Scully, R. & Livingston, D. M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Jiricny, J. Replication errors: cha(lle)nging the genome. EMBO J. 17, 6427–6436 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiricny, J. & Nystrom-Lahti, M. Mismatch repair defects in cancer. Curr. Opin. Genet. Dev. 10, 157–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Heyer, J., Yang, K., Lipkin, M., Edelmann, W. & Kucherlapati, R. Mouse models for colorectal cancer. Oncogene 18, 5325–5333 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. McEachern, M. J., Krauskopf, A. & Blackburn, E. H. Telomeres and their control. Annu. Rev. Genet. 34, 331–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Shay, J. W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Greider, C. W. Telomerase activity, cell proliferation, and cancer. Proc. Natl Acad. Sci. USA 95, 90–92 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tang, R., Cheng, A. J., Wang, J. Y. & Wang, T. C. Close correlation between telomerase expression and adenomatous polyp progression in multistep colorectal carcinogenesis. Cancer Res. 58, 4052–4054 (1998).

    CAS  PubMed  Google Scholar 

  47. Gonzalez-Suarez, E., Samper, E., Flores, J. M. & Blasco, M. A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet. 26, 114–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. de Lange, T. & Jacks, T. For better or worse? Telomerase inhibition and cancer. Cell 98, 273–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age. Nature Genet. 21, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Sugasawa, K. et al. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15, 507–521 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tang, J. Y., Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Xeroderma pigmentosum p48 gene enhances global genomic repair and suppresses UV-induced mutagenesis. Mol. Cell 5, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le Page, F. et al. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101, 159–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Buschta-Hedayat, N., Buterin, T., Hess, M. T., Missura, M. & Naegeli, H. Recognition of nonhybridizing base pairs during nucleotide excision repair of DNA. Proc. Natl Acad. Sci. USA 96, 6090–6095 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sugasawa, K. et al. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2, 223–232 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Houtsmuller, A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–961 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Whitehouse, C. J. et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104, 107–117 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Davies, A. A. et al. Role of BRCA2 in control of RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Hsu, H. L. et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14, 2807–2812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Harfe, B. D. & Jinks-Robertson, S. DNA mismatch repair and genetic instability. Annu. Rev. Genet. 34, 359–399 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Obmolova, G., Ban, C., Hsieh, P. & Yang, W. Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407, 703–710 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Lamers, M. H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch. Nature 407, 711–717 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Karran, P. & Bignami, M. DNA damage tolerance, mismatch repair and genome instability. BioEssays 16, 833–839 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I apologize to my colleagues for being able to cite only recent original papers and for the use of reviews for earlier relevant work, owing to space and reference limitations. I thank L. Niedernhofer for valuable help with the manuscript. J.H.J.H. is supported by the Dutch Cancer Society, the Dutch Science Organization (medical and chemical divisions), the EC, NIH and IACR.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoeijmakers, J. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001). https://doi.org/10.1038/35077232

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077232

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing