Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of Na-Ca exchange current in single cardiac myocytes

Abstract

In cardiac muscle the exchange of intracellular Ca2+ for extracellular Na+ is an important transport mechanism for regulation of the intracellular free Ca2+ concentration ([Ca]i) and hence the contractile strength of the heart (ref. 1 ; for reviews see refs 2–4). Due to its stoichiometry of ≥3:l Na+/Ca2+ (refs 3,5), Na-Ca exchange is supposed to generate a current across the cell membrane. It is thought that such a current may contribute to cardiac action potential and physiological or pathological pacemaker activity6,7. Although the occurrence of Na-Ca exchange is well documented, a membrane current generated by this transport has not been identified unequivocally. Previous attempts to detect such a current-in multicellular preparations, for example, by measuring small current differences after varying the extracellular ionic composition8, although providing evidence, did not rule out other possible interpretations. Here we demonstrate that a transient rise in [Ca]i caused by release of Ca from sarcoplasmic reticulum (SR) generates a membrane current in cardiac myocytes. The dependence of this current on the transmembrane gradients for Na+ and Ca2+ and on membrane potential meets the criteria for a current produced by electrogenic Na-Ca exchange. Cyclic activation of this current by release of Ca from the SR can cause maintained spontaneous activity, suggesting that Na-Ca exchange contributes to certain forms of cardiac pacemaking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Reuter, H. & Seitz, N. J. Physiol., Lond. 195, 451–470 (1968).

    Article  CAS  Google Scholar 

  2. Mullins, L. Am. J. Physiol. 236, C103–110 (1979).

    Article  ADS  Google Scholar 

  3. Reuter, H. in Membranes and Transport Vol. l (ed. Martonosi, A.) 623–631 (Plenum, New York, 1982).

    Book  Google Scholar 

  4. Eisner, D. A. & Lederer, W. J. Am. J. Physiol. 248, 189–202 (1985).

    Article  Google Scholar 

  5. Reeves, J. P. & Hale, C. C. J. biol. Chem. 259, 7733–7739 (1984).

    CAS  Google Scholar 

  6. Noble, D. J. Physiol., Lond. 353, 1–50 (1984).

    Article  CAS  Google Scholar 

  7. Di Francesco, D. & Noble, D. Phil. Trans. R. Soc. B307, 353–389 (1985).

    Article  CAS  Google Scholar 

  8. Mentrard, D., Vassort, G. & Fischmeister, R. J. gen. Physiol. 84, 201–220 (1984).

    Article  CAS  Google Scholar 

  9. Weber, A. & Hertz., R. J. gen. Physiol. 52, 750–759 (1968).

    Article  CAS  Google Scholar 

  10. Jundt, H., Portzig, H., Reuter, H. & Stucki, J. W. J. Physiol., Lond. 246, 229–253 (1975).

    Article  CAS  Google Scholar 

  11. Clusin, T. C. Nature 301, 248–250 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Fabiato, A. & Fabiato, F. J. Physiol., Lond. 249, 469–495 (1975).

    Article  CAS  Google Scholar 

  13. Mechmann, S. & Pott, L. J. Physiol., Lond. 366, 80P (1985).

  14. Kimura, J., Noma, A. & Irisawa, H. Nature (this issue).

  15. Kass, R. S., Tsien, R. W. & Weingart, R. J. Physiol., Lond. 281, 209–226 (1978).

    Article  CAS  Google Scholar 

  16. Karagueuzian, H. S. & Katzung, B. G. J. Physiol., Lond. 327, 255–271 (1982).

    Article  CAS  Google Scholar 

  17. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Bechern, M., Pott, L. & Rennebaum, H. Eur. J. Cell Biol. 31, 366–369 (1983).

    Google Scholar 

  19. Marty, A. & Neher, E. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 107–122 (Plenum, New York, 1983).

    Book  Google Scholar 

  20. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mechmann, S., Pott, L. Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319, 597–599 (1986). https://doi.org/10.1038/319597a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/319597a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing