Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transient activation of inferior prefrontal cortex during cognitive set shifting

Abstract

The Wisconsin Card Sorting Test, which probes the ability to shift attention from one category of stimulus attributes to another (shifting cognitive sets), is the most common paradigm used to detect human frontal lobe pathology. However, the exact relationship of this card test to prefrontal function and the precise anatomical localization of the cognitive shifts involved are controversial. By isolating shift-related signals using the temporal resolution of functional magnetic resonance imaging, we reproducibly found transient activation of the posterior part of the bilateral inferior frontal sulci. This activation was larger as the number of dimensions (relevant stimulus attributes that had to be recognized) were increased. These results suggest that the inferior frontal areas play an essential role in the flexible shifting of cognitive sets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Wisconsin Card Sorting Test (WCST) and event-related fMRI method.
Figure 2: The normalized distribution of the number of trials (a) and the time (b) taken to complete set shifting in the 3D and 2D conditions.
Figure 3: Shift-related activity for one subject detected by event-related fMRI method.
Figure 4: Across-subject distribution of shift-related activity.
Figure 5

Similar content being viewed by others

References

  1. Grant, D. A. & Berg, E. A. A behavioral analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. J. Exp. Psychol. 38, 404– 411 (1948)

    Article  CAS  Google Scholar 

  2. Heaton, R. K. Wisconsin Card Sorting Test Manual (Psychological Assesment Resources, Odessa, Florida, 1993)

    Google Scholar 

  3. Milner, B. Effects of different brain lesions on card sorting. Arch. Neurol. 9, 90–100 (1963)

    Article  Google Scholar 

  4. Drewe, E. A. The effect of type and area of brain lesion on Wisconsin card sorting test performance. Cortex 10, 159–170 (1974)

    Article  CAS  Google Scholar 

  5. Robinson, A. L., Heaton, R. K., Lehman, R. A. W. & Stilson, D. W. The utility of the Wisconsin Card Sorting Test in detecting and localizing frontal lobe lesions. J. Consult. Clin. Psychol. 48 , 605–614 (1980)

    Article  CAS  Google Scholar 

  6. Janowski, J. S., Shimamura, A. P., Kritchevski, M. & Squire, L. R. Cognitive impairment following frontal damage and its relevance to human amnesia . Behav. Neurosci. 103, 548– 560 (1989)

    Article  Google Scholar 

  7. Passingham, R. E. Non-reversal shifts after selective prefrontal ablations in monkeys (Macaca Mulatta). Neuropsychologia 10, 41– 46 (1972)

    CAS  Google Scholar 

  8. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380, 69– 72 (1996)

    Article  CAS  Google Scholar 

  9. Milner, B. in The Frontal Granular Cortex and Behavior (eds Warren, J.M. & Akert, K.) 313–334 (McGraw-Hill, New York, 1964 )

    Google Scholar 

  10. Mishkin, M. in The Frontal Granular Cortex and Behavior (eds Warren, J.M. & Akert, K.) 219–241 (McGraw-Hill, New York, 1964 )

    Google Scholar 

  11. Goldman-Rakic, P. S. in Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. Handbook of Physiology, Vol. 2, (eds Mountcastle, V.B., Plum, F. & Geiger, S.R.), 373–417 (American Physiological Society, Bethesda, 1987)

    Google Scholar 

  12. Petrides, M. in Handbook of Neuropsychology (eds Boller, F. & Grafman, J.) 75– 90 (Elsevier, Amsterdam, 1989)

    Google Scholar 

  13. Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1993)

    Google Scholar 

  14. Damasio, A. R. On some functions of the human prefrontal cortex. Ann. NY Acad. Sci. 769, 241–251 (1995)

    Article  CAS  Google Scholar 

  15. Fuster, J. M. The Prefrontal Cortex (Raven, New York, 1997)

    Google Scholar 

  16. Rosen, B. R., Buckner, R. L. & Dale, A. M. Event-related functional MRI: Past, present, and the future . Proc. Natl. Acad. Sci. USA 95, 773– 780 (1998)

    Article  CAS  Google Scholar 

  17. Mountain, M. A. & Snow, W. G. Wisconsin Card Sorting Test as a measure of frontal pathology: a review. Clin. Neuropsychol. 7, 108–118 (1993)

    Article  Google Scholar 

  18. Friston, K. J., Jezzard, P. & Turner, R. Analysis of functional MRI time-series. Hum. Brain Mapp. 1, 153–171 (1994)

    Article  Google Scholar 

  19. Buckner, R. L. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 93, 14878–14883 (1996)

    Article  CAS  Google Scholar 

  20. Konishi, S. et al. Transient brain activity used in magnetic resonance imaging to detect functional areas . Neuroreport 8, 19–23 (1996)

    Article  CAS  Google Scholar 

  21. Kim, S. G., Richter, W. & Ugurbil, K. Limitation of temporal resolution in functional MRI. Magn. Reson. Med. 37, 631–636 (1997)

    Article  CAS  Google Scholar 

  22. Zarahn, E., Aguirre, G. & D'Esposito, M. A trial-based experimental design for fMRI. Neuroimage 6, 122–138 (1997)

    Article  CAS  Google Scholar 

  23. Blamire, A. M. et al. Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging . Proc. Natl. Acad. Sci. USA 89, 11069– 11073 (1992)

    Article  CAS  Google Scholar 

  24. Narayan, S. M., Santori, E. M. & Toga, A. W. Mapping functional activity in rodent cortex using optical intrinsic signals. Cereb. Cortex 4, 195–204 (1994)

    Article  CAS  Google Scholar 

  25. Savoy, R. L. et al. Pushing the temporal resolution of fMRI: studies of very brief visual stimuli, onset variability and asynchrony, and stimulus-correlated changes in noise. Proc SMR 3rd Annual Meeting 450 (1995)

  26. Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microstimulation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272, 551–554 (1996)

    Article  CAS  Google Scholar 

  27. Buckner, R. L., Raichle, M. E., Miezin, F. M. & Petersen, S. E. Functional anatomic study of memory retrieval for auditory words and visual pictures. J. Neurosci. 16, 6219– 6235 (1996)

    Article  CAS  Google Scholar 

  28. Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. Comparing functional (PET) images: The assessment of significant change. J. Cereb. Blood Flow Metab. 11, 690– 699 (1991)

    Article  CAS  Google Scholar 

  29. Talairach, J. & Tournoux, P. Co-planar stereotaxic atlas of the human brain (Stuttgart, Thieme, 1988)

  30. Hinke, R. M. et al. Functional magnetic resonance imaging of Broca's area during internal speech. Neuroreport 4, 675–678 (1993)

    Article  CAS  Google Scholar 

  31. Kim, K. H. S., Relkin, N. R., Lee, K.-M. & Hirsh, J. Distinct cortical areas associated with native and second languages. Nature 388, 171–174 (1997)

    Article  CAS  Google Scholar 

  32. Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993)

    Article  CAS  Google Scholar 

  33. Petrides, M., Alivisatos, B., Meyer, E. & Evans, A. C. Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc. Natl. Acad. Sci. USA 90, 878 –882 (1993)

    Article  CAS  Google Scholar 

  34. McCarthy, G. et al. Functional magnetic resonance imaging of human prefrontal cortex activation during a spatial working memory task. Proc. Natl. Acad. Sci. USA 91, 8690–8694 (1994)

    Article  CAS  Google Scholar 

  35. D' Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995)

    Article  Google Scholar 

  36. Baker, S. C., Frith, C. D., Frackowiak, R. S. J. & Dolan, R. J. Active representation of shape and spatial location in man. Cereb. Cortex 6, 612–619 (1996)

    Article  CAS  Google Scholar 

  37. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Object and spatial visual working memory activate separate neural systems in human cortex. Cereb. Cortex 6, 39– 49 (1996)

    Article  CAS  Google Scholar 

  38. Fiez, J. A. et al. A positron emission tomography study of the short-term maintenance of verbal information . J. Neurosci. 16, 808– 822 (1996)

    Article  CAS  Google Scholar 

  39. Dehaene, S. et al. Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia 34, 1097–1106 (1996)

    Article  CAS  Google Scholar 

  40. Cohen, D. C. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997)

    Article  CAS  Google Scholar 

  41. Courtney, S. M., Ungerleider, L. G., Keil, K. & Haxby, J. V. Transient and sustained activity in a distributed neural system for human working memory. Nature 386, 608– 611 (1997)

    Article  CAS  Google Scholar 

  42. Klingberg, T., O'Sullivan, B. T. & Roland, P. E. Bilateral activation of fronto-parietal networks by incrementing demand in a working memory task. Cereb. Cortex 7, 465–471 (1997)

    Article  CAS  Google Scholar 

  43. Prabhakaran, V., Smith, J. A., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. Neural substrates of fluid reasoning: an fMR study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cog. Psychol. 33, 43– 63 (1997)

    Article  CAS  Google Scholar 

  44. Miyashita, Y. Inferior temporal cortex: Where visual perception meets memory. Ann. Rev. Neurosci. 16, 245–263 (1993)

    Article  CAS  Google Scholar 

  45. Konishi, S., Nakajima, K., Uchida, I., Sekihara, K. & Miyashita, Y. No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur. J. Neurosci. 10, 1209–1213 (1998)

    Article  CAS  Google Scholar 

  46. Berman, K. F. et al. Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia 33, 1027–1046 (1995)

    Article  CAS  Google Scholar 

  47. Nagahama, Y. et al. Cerebral activation during performance of a card sorting test. Brain 119, 1667–1675 (1996)

    Article  Google Scholar 

  48. Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113 (1971)

    Article  CAS  Google Scholar 

  49. Sakai, K. et al. Functional mapping of the human somatosensory cortex with echo-planar magnetic resonance imaging. Magn. Reson. Med. 33, 736– 743 (1995)

    Article  CAS  Google Scholar 

  50. Sakai, K. et al. Functional mapping of the human colour centre with echo-planar magnetic resonance imaging . Proc. R. Soc. Lond. B 261, 89– 98 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. K. is supported by JSPS Research Fellowships for Young Scientists. This work was supported by a Grant-in-Aid for Specially Promoted Research from the Japanese Ministry of Education, Science and Culture to Y. M., and by a grant from Nissan Science Foundation to Y. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiki Konishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konishi, S., Nakajima, K., Uchida, I. et al. Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci 1, 80–84 (1998). https://doi.org/10.1038/283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing