Skip to main content
Research Article

Lack of Automatic Vocal Response Learning While Reading Aloud

An Implicit Sequence Learning Study

Published Online:https://doi.org/10.1027/1618-3169/a000451

Abstract. Research on implicit sequence learning with the Serial Reaction Task (SRT) has demonstrated that people automatically acquire knowledge about fixed repeating sequences of responses and can transfer response sequence knowledge to novel stimuli. Such demonstrations are, however, mostly limited to setups with visual stimuli and manual responses. Here we systematically follow up on scarce attempts to demonstrate implicit sequence learning in word reading. While the literature on implicit sequence learning can be taken to suggest that sequence knowledge is acquired and affecting performance in word reading, we show that neither is the case in a series of four experiments. Sequence knowledge was acquired and affecting performance in color naming but not in word reading. On the one hand, we observed slowing of voice-onset times in off-sequence as compared to regularly sequenced trials when people named the color of a centrally presented disk. Yet, hardly any effect was observed when the very same sequence of words was verbalized in word reading instead. Transfer of sequence knowledge to and from color naming was not observed, either. This contrasts with sequence learning studies with manual responses, which have been taken to suggest that a fixed and repeating sequence of responses is sufficient for learning to occur even in fast choice reaction tasks and to transfer across stimuli as long as the sequence of responses remains intact. Rather, in line with dimensional action accounts of task performance, the results underline the role of translation between processing streams for implicit sequence learning.

References

  • Abrahamse, E. L., Jiménez, L., Verwey, W. B., & Clegg, B. A. (2010). Representing serial action and perception. Psychonomic Bulletin & Review, 17, 603–623. https://doi.org/10.3758/pbr.17.5.603 First citation in articleCrossref MedlineGoogle Scholar

  • Abrahamse, E. L., Van Der Lubbe, R. H., & Verwey, W. B. (2008). Asymmetrical learning between a tactile and visual serial RT task. The Quarterly Journal of Experimental Psychology, 61, 210–217. https://doi.org/10.1080/17470210701566739 First citation in articleCrossrefGoogle Scholar

  • Cohen, A., Ivry, R. I., & Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 17–30. https://doi.org/10.1037/0278-7393.16.1.17 First citation in articleCrossrefGoogle Scholar

  • Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical learning of tactile, visual, and auditory sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 24–39. https://doi.org/10.1037/0278-7393.31.1.24 First citation in articleCrossref MedlineGoogle Scholar

  • Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 189–202. https://doi.org/10.1037/0278-7393.19.1.189 First citation in articleCrossrefGoogle Scholar

  • Deroost, N., & Soetens, E. (2006a). Perceptual or motor learning in SRT tasks with complex sequence structures. Psychological Research, 70, 88–102. https://doi.org/10.1007/s00426-004-0196-3 First citation in articleCrossref MedlineGoogle Scholar

  • Deroost, N., & Soetens, E. (2006b). The role of response selection in sequence learning. The Quarterly Journal of Experimental Psychology, 59, 449–456. https://doi.org/10.1080/17470210500462684 First citation in articleCrossrefGoogle Scholar

  • Deroost, N., & Soetens, E. (2006c). Spatial processing and perceptual sequence learning in SRT tasks. Experimental Psychology, 53, 16–30. https://doi.org/10.1027/1618-3169.53.1.16 First citation in articleLinkGoogle Scholar

  • Deroost, N., Vandenbossche, J., Zeischka, P., Coomans, D., & Soetens, E. (2012). Cognitive control: A role for implicit learning? Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1243–1258. https://doi.org/10.1037/a0027633 First citation in articleCrossref MedlineGoogle Scholar

  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191. https://doi.org/10.3758/bf03193146 First citation in articleCrossref MedlineGoogle Scholar

  • Ferdinand, N. K., & Kray, J. (2017). Does language help regularity learning? The influence of verbalizations on implicit sequential regularity learning and the emergence of explicit knowledge in children, younger and older adults. Developmental Psychology, 53, 597–610. https://doi.org/10.1037/dev0000262 First citation in articleCrossref MedlineGoogle Scholar

  • Frensch, P. A., Lin, J., & Buchner, A. (1998). Learning versus behavioral expression of the learned: The effects of a secondary tone-counting task on implicit learning in the serial reaction task. Psychological Research, 61, 83–98. https://doi.org/10.1007/s004260050015 First citation in articleCrossrefGoogle Scholar

  • Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22, 95–110. https://doi.org/10.3758/bf03202765 First citation in articleCrossref MedlineGoogle Scholar

  • Frensch, P. A., Wenke, D., & Rünger, D. (1999). A secondary tone-counting task suppresses expression of knowledge in the serial reaction task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 260–274. https://doi.org/10.1037/0278-7393.25.1.260 First citation in articleCrossrefGoogle Scholar

  • Gaschler, R., Frensch, P. A., Cohen, A., & Wenke, D. (2012). Implicit sequence learning based on instructed task set. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1389–1407. https://doi.org/10.1037/a0028071 First citation in articleCrossref MedlineGoogle Scholar

  • Gaschler, R., & Nattkemper, D. (2012). Instructed task demands and utilization of action effect anticipation. Frontiers in Psychology, 3, 1–14. https://doi.org/10.3389/fpsyg.2012.00578 First citation in articleCrossref MedlineGoogle Scholar

  • Geiger, A., Cleeremans, A., Bente, G., & Vogeley, K. (2018). Social cues alter implicit motor learning in a serial reaction time task. Frontiers in Human Neuroscience, 12, 197. https://doi.org/10.3389/fnhum.2018.00197 First citation in articleCrossref MedlineGoogle Scholar

  • Gomez, R. L. (1997). Transfer and complexity in artificial grammar learning. Cognitive Psychology, 33, 154–207. https://doi.org/10.1006/cogp.1997.0654 First citation in articleCrossref MedlineGoogle Scholar

  • Hartman, M., Knopman, D. S., & Nissen, M. J. (1989). Implicit learning of new verbal associations. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1070–1082. https://doi.org/10.1037/0278-7393.15.6.1070 First citation in articleCrossref MedlineGoogle Scholar

  • Hoffmann, J., & Koch, I. (1997). Stimulus-response compatibility and sequential learning in the serial reaction time task. Psychological Research, 60, 87–97. https://doi.org/10.1007/bf00419682 First citation in articleCrossrefGoogle Scholar

  • Israel, M., & Cohen, A. (2011). Involuntary strategy-dependent dual task performance. Psychological Research, 75, 513–524. https://doi.org/10.1007/s00426-011-0359-y First citation in articleCrossref MedlineGoogle Scholar

  • Koch, I. (2007). Anticipatory response control in motor sequence learning: Evidence from stimulus-response compatibility. Human Movement Science, 26, 257–274. https://doi.org/10.1016/j.humov.2007.01.004 First citation in articleCrossref MedlineGoogle Scholar

  • Koch, I., & Hoffmann, J. (2000). The role of stimulus-based and response-based spatial information in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 863–882. https://doi.org/10.1037/0278-7393.26.4.863 First citation in articleCrossref MedlineGoogle Scholar

  • Künzell, S., Sießmeir, D., & Ewolds, H. (2017). Validation of the continuous tracking paradigm for studying implicit motor learning. Experimental Psychology, 63, 318–325. https://doi.org/10.1027/1618-3169/a000343 First citation in articleLinkGoogle Scholar

  • Lum, J. A. G., Lammertink, I., Clark, G. M., Fuelscher, I., Hyde, C., Enticott, P. G., & Ullman, M. T. (2018). Visuospatial sequence learning on the serial reaction time task modulates the P1 event‐related potential. Psychophysiology, 56, e13292. https://doi.org/10.1111/psyp.13292 First citation in articleCrossref MedlineGoogle Scholar

  • Magen, H., & Cohen, A. (2007). Modularity beyond perception: Evidence from single task interference paradigms. Cognitive Psychology, 55, 1–36. https://doi.org/10.1016/j.cogpsych.2006.09.003 First citation in articleCrossref MedlineGoogle Scholar

  • Magen, H., & Cohen, A. (2010). Modularity beyond perception: Evidence from the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 36, 395–414. https://doi.org/10.1037/a0017174 First citation in articleCrossref MedlineGoogle Scholar

  • Masson, M. E. (2009, November). Lag-2 repetition cost in task switching backward inhibition of gambler’s fallacy. Paper presented at the Proceedings of the 50th Annual Meeting of the Psychonomic Society. https://doi.org/10.1037/e520562012-175 First citation in articleGoogle Scholar

  • Mayr, U. (1996). Spatial attention and implicit sequence learning: Evidence for independent learning of spatial and nonspatial sequences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 350–364. https://doi.org/10.1037/0278-7393.22.2.350 First citation in articleCrossref MedlineGoogle Scholar

  • Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76, 165–178. https://doi.org/10.1037/h0027366 First citation in articleCrossrefGoogle Scholar

  • Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32. https://doi.org/10.1016/0010-0285(87)90002-8 First citation in articleCrossrefGoogle Scholar

  • Pacton, S., Perruchet, P., Fayol, M., & Cleeremans, A. (2001). Implicit learning out of the lab: The case of orthographic regularities. Journal of Experimental Psychology: General, 130, 401–426. https://doi.org/10.1037/0096-3445.130.3.401 First citation in articleCrossref MedlineGoogle Scholar

  • Perlman, A., & Tzelgov, J. (2006). Interactions between encoding and retrieval in the domain of sequence-learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 118–130. https://doi.org/10.1037/0278-7393.32.1.118 First citation in articleCrossref MedlineGoogle Scholar

  • Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested incremental modeling in the development of computational theories: The CDP + model of reading aloud. Psychological Review, 114, 273–315. https://doi.org/10.1037/0033-295x.114.2.273 First citation in articleCrossref MedlineGoogle Scholar

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. BoumaD. G. BouwhuisEds., Attention and performance X: Control of language processes (pp. 531–556). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863. https://doi.org/10.1016/s0022-5371(67)80149-x First citation in articleCrossrefGoogle Scholar

  • Remillard, G. (2003). Pure perceptual-based sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 581–597. https://doi.org/10.1037/0278-7393.29.4.581 First citation in articleCrossref MedlineGoogle Scholar

  • Remillard, G. (2009). Pure perceptual-based sequence learning: A role for visuospatial attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 528–541. https://doi.org/10.1037/a0014646 First citation in articleCrossref MedlineGoogle Scholar

  • Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274(5294), 1926–1928. https://doi.org/10.1126/science.274.5294.1926 First citation in articleCrossref MedlineGoogle Scholar

  • Schumacher, E. H., & Schwarb, H. (2009). Parallel response selection disrupts sequence learning under dual-task conditions. Journal of Experimental Psychology: General, 138, 270–290. https://doi.org/10.1037/a0015378 First citation in articleCrossref MedlineGoogle Scholar

  • Shanks, D. R., Johnstone, T., & Kinder, A. (2002). Modularity and artificial grammar learning. In R. FrenchA. CleeremansEds., Implicit Learning and Consciousness (pp. 93–120). Hove, UK: Psychology Press. First citation in articleGoogle Scholar

  • Shanks, D. R., Wilkinson, L., & Channon, S. (2003). Relationship between priming and recognition in deterministic and probabilistic sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 248–261. https://doi.org/10.1037/0278-7393.29.2.248 First citation in articleCrossref MedlineGoogle Scholar

  • Taesler, P., Jablonowski, J., Fu, Q., & Rose, M. (2018). Modeling implicit learning in a cross-modal audio-visual serial reaction time task. Cognitive Systems Research, 54, 154–164. https://doi.org/10.1016/j.cogsys.2018.10.002 First citation in articleCrossrefGoogle Scholar

  • Twick, M., & Cohen, A. (2011). Flexibility over automaticity: Separable representations for colours and words. Visual Cognition, 19, 392–414. https://doi.org/10.1080/13506285.2010.544463 First citation in articleCrossrefGoogle Scholar

  • Vaquero, J. M., Jiménez, L., & Lupiáñez, J. (2006). The problem of reversals in assessing implicit sequence learning with serial reaction time tasks. Experimental Brain Research, 175, 97–109. https://doi.org/10.1007/s00221-006-0523-6 First citation in articleCrossref MedlineGoogle Scholar

  • Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105, 558–584. https://doi.org/10.1037/0033-295x.105.3.558 First citation in articleCrossref MedlineGoogle Scholar

  • Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561–572. https://doi.org/10.3758/bf03211549 First citation in articleCrossref MedlineGoogle Scholar

  • Willingham, D. B., & Goedert-Eschmann, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531–534. https://doi.org/10.1111/1467-9280.00201 First citation in articleCrossrefGoogle Scholar

  • Willingham, D. B., Greeley, T., & Bardone, A. M. (1993). Dissociation in a serial response time task using a recognition measure: Comment on Perruchet and Amorim (1992). Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1424–1430. https://doi.org/10.1037/0278-7393.19.6.1424 First citation in articleCrossrefGoogle Scholar

  • Willingham, D. B., Wells, L. A., Farrell, J. M., & Stemwedel, M. E. (2000). Implicit motor sequence learning is represented in response locations. Memory & Cognition, 28, 366–375. https://doi.org/10.3758/bf03198552 First citation in articleCrossref MedlineGoogle Scholar

  • Zeelenberg, R., Pecher, D., de Kok, D., & Raaijmakers, J. G. (1998). Inhibition from nonword primes in lexical decision reexamined: The critical influence of instructions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1068. https://doi.org/10.1037/0278-7393.24.4.1068 First citation in articleCrossrefGoogle Scholar

  • Zirngibl, C., & Koch, I. (2002). The impact of response mode on implicit and explicit sequence learning. Experimental Psychology, 49, 153–162. https://doi.org/10.1027/1618-3169.49.2.153 First citation in articleLinkGoogle Scholar