Skip to main content
Original Article

Comparing the Performance of Improved Classify-Analyze Approaches for Distal Outcomes in Latent Profile Analysis

Published Online:https://doi.org/10.1027/1614-2241/a000114

Abstract. Several approaches are available for estimating the relationship of latent class membership to distal outcomes in latent profile analysis (LPA). A three-step approach is commonly used, but has problems with estimation bias and confidence interval coverage. Proposed improvements include the correction method of Bolck, Croon, and Hagenaars (BCH; 2004), Vermunt’s (2010) maximum likelihood (ML) approach, and the inclusive three-step approach of Bray, Lanza, and Tan (2015). These methods have been studied in the related case of latent class analysis (LCA) with categorical indicators, but not as well studied for LPA with continuous indicators. We investigated the performance of these approaches in LPA with normally distributed indicators, under different conditions of distal outcome distribution, class measurement quality, relative latent class size, and strength of association between latent class and the distal outcome. The modified BCH implemented in Latent GOLD had excellent performance. The maximum likelihood and inclusive approaches were not robust to violations of distributional assumptions. These findings broadly agree with and extend the results presented by Bakk and Vermunt (2016) in the context of LCA with categorical indicators.

References

  • Asparouhov, T. & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling, 21, 329–341. First citation in articleCrossrefGoogle Scholar

  • Ayer, L., Rettew, D., Althoff, R. R., Willemsen, G., Ligthart, L., Hudziak, J. J. & Boomsma, D. I. (2011). Adolescent personality profiles, neighborhood income, and young adult alcohol use: A longitudinal study. Addictive Behaviors, 36, 1301–1304. doi: 10.1016/j.addbeh.2011.07.004 First citation in articleCrossrefGoogle Scholar

  • Bakk, Z., Oberski, D. L. & Vermunt, J. K. (2014). Relating latent class assignments to external variables: Standard errors for corrected inference. Political Analysis, 22, 520–540. doi: 10.1093/pan/mpu003 First citation in articleCrossrefGoogle Scholar

  • Bakk, Z., Oberski, D. L. & Vermunt, J. K. (2016). Relating latent class membership to continuous distal outcomes: Improving the LTB approach and a modified three-step implementation. Structural Equation Modeling, 23, 278–289. doi: 10.1080/10705511.2015.1049698 First citation in articleCrossrefGoogle Scholar

  • Bakk, Z., Tekle, F. B. & Vermunt, J. K. (2013). Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological Methodology, 43, 272–311. doi: 10.1177/0081175012470644 First citation in articleCrossrefGoogle Scholar

  • Bakk, Z. & Vermunt, J. K. (2016). Robustness of stepwise latent class modeling with continuous distal outcomes. Structural Equation Modeling, 23, 20–31. doi: 10.1080/10705511.2014.955104 First citation in articleCrossrefGoogle Scholar

  • Bandeen-Roche, A. K., Miglioretti, D. L., Zeger, S. L. & Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92, 1375–1386. doi: 10.2307/2965407 First citation in articleCrossrefGoogle Scholar

  • Bolck, A., Croon, M. & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12, 3–27. doi: 10.1093/pan/mph001 First citation in articleCrossrefGoogle Scholar

  • Bray, B. C., Lanza, S. T. & Tan, X. (2015). Eliminating bias in classify-analyze approaches for latent class analysis. Structural Equation Modeling, 22, 1–11. doi: 10.1080/10705511.2014.935265 First citation in articleCrossrefGoogle Scholar

  • Chung, H., Anthony, J. C. & Schafer, J. L. (2011). Latent class profile analysis: An application to stage sequential processes in early onset drinking behaviours. Journal of the Royal Statistical Society: Series A (Statistics in Society), 174, 689–712. doi: 10.1111/j.1467-985X.2010.00674.x First citation in articleCrossrefGoogle Scholar

  • Clogg, C. C. & Goodman, L. A. (1984). Latent structure analysis of a set of multidimensional contingency tables. Journal of the American Statistical Association, 79, 762–771. doi: 10.1080/01621459.1984.10477093 First citation in articleCrossrefGoogle Scholar

  • Collins, L. M. (2001). Reliability for static and dynamic categorical latent variables: Developing measurement instruments based on a model of the growth process. In L. M. CollinsA. G. SayerEds., New methods for the analysis of change (pp. 273–288). Washington, DC: American Psychological Association. First citation in articleGoogle Scholar

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96, 1348–1360. doi: 10.1198/016214501753382273 First citation in articleCrossrefGoogle Scholar

  • Gibson, W. A. (1959). Three multivariate models: Factor analysis, latent structure analysis, and latent profile analysis. Psychometrika, 24, 229–252. doi: 10.1007/BF02289845 First citation in articleCrossrefGoogle Scholar

  • Gudicha, D. & Vermunt, J. K. (2013). Mixture model clustering with covariates using adjusted three-step approaches. In B. LausenD. van den PoelA. UltschEds., Algorithms from and for nature and life: Classification and data analysis (pp. 87–94). Heidelberg, Germany: Springer. doi: 10.1007/978-3-319-00035-0 First citation in articleCrossrefGoogle Scholar

  • Hastie, T., Tibshirani, R. & Friedman, J. (2013). The elements of statistical learning (10th ed.). New York, ny: Springer. First citation in articleGoogle Scholar

  • Herman, K. C., Bi, Y., Borden, L. A. & Reinke, W. M. (2012). Latent classes of psychiatric symptoms among Chinese children living in poverty. Journal of Child and Family Studies, 21, 391–402. doi: 10.1007/s10826-011-9490-z First citation in articleCrossrefGoogle Scholar

  • Herman, K. C., Ostrander, R., Walkup, J. T., Silva, S. G. & March, J. S. (2007). Empirically derived subtypes of adolescent depression: Latent profile analysis of co-occurring symptoms in the Treatment for Adolescents with Depression Study (TADS). Journal of Consulting and Clinical Psychology, 75, 716–728. doi: 10.1037/0022-006X.75.5.716 First citation in articleCrossrefGoogle Scholar

  • Krug, I., Root, T., Bulik, C., Granero, R., Penelo, E., Jiménez-Murcia, S. & Fernández-Aranda, F. (2011). Redefining phenotypes in eating disorders based on personality: A latent profile analysis. Psychiatry Research, 188, 439–445. doi: 10.1016/j.psychres.2011.05.026 First citation in articleCrossrefGoogle Scholar

  • Lanza, S. T. & Rhoades, B. L. (2013). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 14, 157–168. First citation in articleCrossrefGoogle Scholar

  • Lanza, S. T., Tan, X. & Bray, B. C. (2013). Latent class analysis with distal outcomes: A flexible model-based approach. Structural Equation Modeling, 20, 1–26. doi: 10.1080/10705511.2013.742377 First citation in articleCrossrefGoogle Scholar

  • Lazarsfeld, P. F. & Henry, N. W. (1968). Latent structure analysis. Boston, MA: Houghton Mifflin. First citation in articleGoogle Scholar

  • Merz, E. L. & Roesch, S. C. (2011). A latent profile analysis of the Five Factor Model of personality: Modeling trait interactions. Personality and Individual Differences, 51, 915–919. doi: 10.1016/j.paid.2011.07.022 First citation in articleCrossrefGoogle Scholar

  • Peterson, J., Bandeen-Roche, K., Budtz-Jørgensen, E. & Larsen, K. G. (2012). Predicting latent class scores for subsequent analysis. Psychometrika, 77, 244–262. doi: 10.1007/s11336-012-9248-6 First citation in articleCrossrefGoogle Scholar

  • R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from at http://www.R-project.org/ First citation in articleGoogle Scholar

  • Ramaswamy, V., DeSarbo, W. S., Reibstein, D. J. & Robinson, W. T. (1993). An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12, 103–124. doi: 10.1287/mksc.12.1.103 First citation in articleCrossrefGoogle Scholar

  • Schafer, J. L. (1999). Multiple imputation: A primer. Statistical Methods in Medical Research, 8, 3–15. doi: 10.1177/096228029900800102 First citation in articleCrossrefGoogle Scholar

  • Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18, 450–469. doi: 10.1093/pan/mpq025 First citation in articleCrossrefGoogle Scholar

  • Vermunt, J. K. & Magidson, J. (2015). Upgrade manual for Latent GOLD 5.1. Belmont, MA: Statistical Innovations. First citation in articleGoogle Scholar

  • Zhang, J., Bray, B. C., Zhang, M. & Lanza, S. T. (2015). Personality profiles and frequent heavy drinking in young adulthood. Personality and Individual Differences, 80, 18–21. doi: 10.1016/j.paid.2015.01.054 First citation in articleCrossrefGoogle Scholar