Skip to main content
Article

Resting Heart Rate Variability Predicts Inhibitory Control Above and Beyond Impulsivity

Published Online:https://doi.org/10.1027/0269-8803/a000222

Abstract. Heart rate variability (HRV) has been linked to effective functioning of prefrontal-subcortical inhibitory circuits. Despite the recognized role of the prefrontal cortex (PFC) in executive functions linked to inhibitory capacity, studies linking HRV to executive functions are inconsistent, likely due to potential confounders. The present study sought to examine this relation in a sample of 50 healthy participants (31 females; Mage = 24.2 years) who underwent assessment of resting HRV and two executive tasks assessing inhibitory control, namely the Rule Shift Cards and the Hayling Sentence Completion Test. Hierarchical multiple regressions showed that HRV predicted performance on both tasks (i.e., time taken to inhibit a strongly activated response) above and beyond the role of sex, body mass index, and impulsivity. Present results disconfirm that the HRV-executive function association is only due to confounders, and corroborate such relationship with the use of two ecological tasks assessing inhibitory control. Current findings support the Neurovisceral Integration Model and provide plausible explanation for previous inconsistent results.

References

  • Albinet, C. T., Abou-Dest, A., André, N. & Audiffren, M. (2016). Executive functions improvement following a 5-month aquaerobics program in older adults: Role of cardiac vagal control in inhibition performance. Biological Psychology, 115, 69–77. https://doi.org/10.1016/j.biopsycho.2016.01.010 First citation in articleCrossrefGoogle Scholar

  • Albinet, C. T., Boucard, G., Bouquet, C. A. & Audiffren, M. (2010). Increased heart rate variability and executive performance after aerobic training in the elderly. European Journal of Applied Physiology, 109, 617–624. https://doi.org/10.1007/s00421-010-1393-y First citation in articleCrossrefGoogle Scholar

  • Allen, M. T., Hogan, A. M. & Laird, L. K. (2009). The relationships of impulsivity and cardiovascular responses: The role of gender and task type. International Journal of Psychophysiology, 73, 369–376. https://doi.org/10.1016/j.ijpsycho.2009.05.014 First citation in articleCrossrefGoogle Scholar

  • Allen, M. T., Matthews, K. A. & Kenyon, K. L. (2000). The relationships of resting baroreflex sensitivity, heart rate variability and measures of impulse control in children and adolescents. International Journal of Psychophysiology, 37, 185–194. https://doi.org/10.1016/S0167-8760(00)00089-1 First citation in articleCrossrefGoogle Scholar

  • Antonucci, G., Spitoni, G., Orsini, A., D’Olimpio, F. & Cantagallo, A. (2014). Taratura Italiana della Batteria per la valutazione della Sindrome Disesecutiva: BADS [Italian validation of the Behavioural Assessment of the Dysexecutive Syndrome: BADS]. Firenze, Italy: Organizzazioni Speciali. First citation in articleGoogle Scholar

  • Brevet-Aeby, C., Brunelin, J., Iceta, S., Padovan, C. & Poulet, E. (2016). Prefrontal cortex and impulsivity: Interest of noninvasive brain stimulation. Neuroscience and Biobehavioral Reviews, 71, 112–134. https://doi.org/10.1016/j.neubiorev.2016.08.028 First citation in articleCrossrefGoogle Scholar

  • Britton, A., Singh-Manoux, A., Hnatkova, K., Malik, M., Marmot, M. G. & Shipley, M. (2008). The association between heart rate variability and cognitive impairment in middle-aged men and women. The Whitehall II Cohort study. Neuroepidemiology, 31, 115–121. https://doi.org/10.1159/000148257 First citation in articleCrossrefGoogle Scholar

  • Buczylowska, D. & Petermann, F. (2016). Age-related differences and heterogeneity in executive functions: Analysis of NAB Executive Functions Module Scores. Archives in Clinical Neuropsychology, 31, 254–262. https://doi.org/10.1093/arclin/acw005 First citation in articleCrossrefGoogle Scholar

  • Burgess, P. & Shallice, T. (1997). The Hayling and Brixton Tests. Test manual. Bury St Edmunds, UK: Thames Valley Test Company. First citation in articleGoogle Scholar

  • Byrd, D. L., Reuther, E. T., McNamara, J. P., DeLucca, T. L. & Berg, W. K. (2015). Age differences in high frequency phasic heart rate variability and performance response to increased executive function load in three executive function tasks. Frontiers in Psychology, 5, 1470. https://doi.org/10.3389/fpsyg.2014.01470 First citation in articleCrossrefGoogle Scholar

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750 First citation in articleCrossrefGoogle Scholar

  • Duschek, S., Muckenthaler, M., Werner, N. & del Paso, G. A. R. (2009). Relationships between features of autonomic cardiovascular control and cognitive performance. Biological Psychology, 81, 110–117. https://doi.org/10.1016/j.biopsycho.2009.03.003 First citation in articleCrossrefGoogle Scholar

  • Espinosa, A., Alegret, M., Boada, M., Vinyes, G., Valero, S., Martínez-Lage, P., … Tárraga, L. (2009). Ecological assessment of executive functions in mild cognitive impairment and mild Alzheimer’s disease. Journal of the International Neuropsychological Society: JINS, 15, 751–757. https://doi.org/10.1017/S135561770999035X First citation in articleCrossrefGoogle Scholar

  • Fino, E., Melogno, S., Iliceto, P., D’Aliesio, S., Pinto, M. A., Candilera, G., … Sabatello, U. (2014). Executive functions, impulsivity, and inhibitory control in adolescents: A structural equation model. Advances in Cognitive Psychology, 10, 32–38. https://doi.org/10.5709/acp-0154-5 First citation in articleCrossrefGoogle Scholar

  • Fuster, J. M. (2015). The prefrontal cortex (5th ed.). London, UK: Elsevier. First citation in articleCrossrefGoogle Scholar

  • Gazzellini, S., Dettori, M., Amadori, F., Paoli, B., Napolitano, A., Mancini, F., … Ottaviani, C. (2016). Association between attention and heart rate fluctuations in pathological worriers. Frontiers in Neuroscience, 10, 648. https://doi.org/10.3389/fnhum.2016.00648 First citation in articleGoogle Scholar

  • Gillie, B. L., Vasey, M. W. & Thayer, J. F. (2014). Heart rate variability predicts control over memory retrieval. Psychological Science, 25, 458–465. https://doi.org/10.1177/0956797613508789 First citation in articleCrossrefGoogle Scholar

  • Gillie, B. L., Vasey, M. W. & Thayer, J. F. (2015). Individual differences in resting heart rate variability moderate thought suppression success. Psychophysiology, 52, 1149–1160. https://doi.org/10.1111/psyp.12443 First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H., Sollers, J. J., 3rd, Stenvik, K. & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. European Journal of Applied Physiology, 93, 263–272. https://doi.org/10.1007/s00421-004-1208-0 First citation in articleCrossrefGoogle Scholar

  • Hansen, A. L., Johnsen, B. H. & Thayer, J. F. (2003). Vagal influence on working memory and attention. International Journal of Psychophysiology, 48, 263–274. https://doi.org/10.1016/S0167-8760(03)00073-4 First citation in articleCrossrefGoogle Scholar

  • Hovland, A., Pallesen, S., Hammar, Å., Hansen, A. L., Thayer, J. F., Tarvainen, M. P., … Nordhus, I. H. (2012). The relationships among heart rate variability, executive functions, and clinical variables in patients with panic disorder. International Journal of Psychophysiology, 86, 269–275. https://doi.org/10.1016/j.ijpsycho.2012.10.004 First citation in articleCrossrefGoogle Scholar

  • Hughes, C. (2013). Executive function: Development, individual differences, and clinical insights. In J. RubensteinP. RakicEds., Neural circuit development and function in the brain (pp. 429–445). London, UK: Academic Press. First citation in articleGoogle Scholar

  • Jennings, J. R., Allen, B., Gianaros, P. J., Thayer, J. F. & Manuck, S. B. (2015). Focusing neurovisceral integration: Cognition, heart rate variability, and cerebral blood flow. Psychophysiology, 52, 214–224. https://doi.org/10.1111/psyp.12319 First citation in articleCrossrefGoogle Scholar

  • Jennings, J. R., Kamarck, T., Stewart, C., Eddy, M. & Johnson, P. (1992). Alternate cardiovascular baseline assessment techniques: Vanilla or resting baseline. Psychophysiology, 29, 742–750. https://doi.org/10.1111/j.1469-8986.1992.tb02052.x First citation in articleCrossrefGoogle Scholar

  • Johnsen, B. H., Thayer, J. F., Laberg, J. C., Wormnes, B., Raadal, M., Skaret, E., … Berg, E. (2003). Attentional and physiological characteristics of patients with dental anxiety. Journal of Anxiety Disorders, 17, 75–87. https://doi.org/10.1016/S0887-6185(02)00178-0 First citation in articleCrossrefGoogle Scholar

  • Kemp, A. H., López, S. R., Passos, V. M. A., Bittencourt, M. S., Dantas, E. M., Mill, J. G., … Lotufo, P. A. (2016). Insulin resistance and carotid intima-media thickness mediate the association between resting-state heart rate variability and executive function: A path modelling study. Biological Psychology, 117, 216–224. https://doi.org/10.1016/j.biopsycho.2016.04.006 First citation in articleCrossrefGoogle Scholar

  • Kimhy, D., Crowley, O. V., McKinley, P. S., Burg, M. M., Lachman, M. E., Tun, P. A., … Sloan, R. P. (2013). The association of cardiac vagal control and executive functioning – Findings from the MIDUS study. Journal of Psychiatry Research, 47, 628–635. https://doi.org/10.1016/j.jpsychires.2013.01.018 First citation in articleCrossrefGoogle Scholar

  • Lipszyc, J. & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16, 1064–1076. https://doi.org/10.1017/S1355617710000895 First citation in articleCrossrefGoogle Scholar

  • Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J. & Hagger, M. S. (2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5, e00332. https://doi.org/10.1002/brb3.332 First citation in articleCrossrefGoogle Scholar

  • Logan, G. D., Schachar, R. J. & Tannock, R. (1997). Impulsivity and inhibitory control. Psychological Science, 8, 60–64. https://doi.org/10.1111/j.1467-9280.1997.tb00545.x First citation in articleCrossrefGoogle Scholar

  • Luft, C. D., Takase, E. & Darby, D. (2009). Heart rate variability and cognitive function: Effects of physical effort. Biological Psychology, 82, 164–168. https://doi.org/10.1016/j.biopsycho.2009.07.007 First citation in articleCrossrefGoogle Scholar

  • Makovac, E., Meeten, F., Watson, D. R., Herman, A., Garfinkel, S. N., Critchley, H. D. & Ottaviani, C. (2016). Alterations in amygdala-prefrontal functional connectivity account for excessive worry and autonomic dysregulation in generalized anxiety disorder. Biological Psychiatry, 80, 786–795. https://doi.org/10.1016/j.biopsych.2015.10.013 First citation in articleCrossrefGoogle Scholar

  • Makovac, E., Thayer, J. F. & Ottaviani, C. (2017). A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease. Neuroscience and Biobehavioral Reviews, 74, 330–341. https://doi.org/10.1016/j.neubiorev.2016.05.001 First citation in articleCrossrefGoogle Scholar

  • Mann, S. L., Selby, E. A., Bates, M. E. & Contrada, R. J. (2015). Integrating affective and cognitive correlates of heart rate variability: A structural equation modeling approach. International Journal of Psychophysiology, 98, 76–86. https://doi.org/10.1016/j.ijpsycho.2015.07.003 First citation in articleCrossrefGoogle Scholar

  • Mathewson, K. J., Jetha, M. K., Drmic, I. E., Bryson, S. E., Goldberg, J. O., Hall, G. B., … Schmidt, L. A. (2010). Autonomic predictors of Stroop performance in young and middle-aged adults. International Journal of Psychophysiology, 76, 123–129. https://doi.org/10.1016/j.ijpsycho.2010.02.007 First citation in articleCrossrefGoogle Scholar

  • Mezzacappa, E., Kindlon, D., Saul, J. P. & Earls, F. (1998). Executive and motivational control of performance task behavior, and autonomic heart-rate regulation in children: Physiologic validation of two-factor solution inhibitory control. Journal of Child Psychology and Psychiatry, 39, 525–531. https://doi.org/10.1111/1469-7610.00348 First citation in articleCrossrefGoogle Scholar

  • Miyake, A. & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 8–14. https://doi.org/10.1177/0963721411429458 First citation in articleCrossrefGoogle Scholar

  • Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T. & O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in Cognitive Sciences, 15, 453–459. https://doi.org/10.1016/j.tics.2011.07.011 First citation in articleCrossrefGoogle Scholar

  • Parak, J., Tarniceriu, A., Renevey, P., Bertschi, M., Delgado-Gonzalo, R. & Korhonen, I. (2015). Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate monitor. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015, 8099–8102. https://doi.org/10.1109/EMBC.2015.7320273 First citation in articleGoogle Scholar

  • Park, G., Vasey, M. W., Van Bavel, J. J. & Thayer, J. F. (2014). When tonic cardiac vagal tone predicts changes in phasic vagal tone: The role of fear and perceptual load. Psychophysiology, 51, 419–426. https://doi.org/10.1111/psyp.12186 First citation in articleCrossrefGoogle Scholar

  • Patton, J. H., Stanford, M. S. & Barratt, E. S. (1995). Factor structure of the Barratt Impulsiveness Scale. Journal of Clinical Psychology, 51, 768–774. First citation in articleCrossrefGoogle Scholar

  • Penttilä, J., Helminen, A., Jartti, T., Kuusela, T., Huikuri, H. V., Tulppo, M. P., … Scheinin, H. (2001). Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clinical Physiology, 21, 365–376. https://doi.org/10.1046/j.1365-2281.2001.00337.x First citation in articleCrossrefGoogle Scholar

  • Petrocchi, N., Piccirillo, G., Fiorucci, C., Moscucci, F., Di Iorio, C., Mastropietri, F., … Ottaviani, C. (2017). Transcranial direct current stimulation enhances soothing positive affect and vagal tone. Neuropsychologia, 96, 256–261. https://doi.org/10.1016/j.neuropsychologia.2017.01.028 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42, 123–146. https://doi.org/10.1016/S0167-8760(01)00162-3 First citation in articleCrossrefGoogle Scholar

  • Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116–143. https://doi.org/10.1016/j.biopsycho.2006.06.009 First citation in articleCrossrefGoogle Scholar

  • Sakaki, M., Yoo, H. J., Nga, L., Lee, T.-H., Thayer, J. F. & Mather, M. (2016). Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults. NeuroImage, 139, 44–52. https://doi.org/10.1016/j.neuroimage.2016.05.076 First citation in articleCrossrefGoogle Scholar

  • Spitoni, G. F., Bevacqua, S., Cerini, C., Ciurli, M. P., Piccardi, L., Guaroglia, P., … Antonucci, G. (2017). Normative data for the Hayling and Brixton tests in an Italian population. Archives of Clinical Neuropsychology. Advance online publication. https://doi.org/10.1093/arclin/acx072 First citation in articleCrossrefGoogle Scholar

  • Spitoni, G. F., Ottaviani, C., Petta, A. M., Zingaretti, P., Aragona, M., Sarnicola, A. & Antonucci, G. (2017). Obesity is associated with lack of inhibitory control and impaired heart rate variability reactivity and recovery in response to food stimuli. International Journal of Psychophysiology, 116, 77–84. https://doi.org/10.1016/j.ijpsycho.2017.04.001 First citation in articleCrossrefGoogle Scholar

  • Suess, P. E., Porges, S. W. & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31, 17–22. https://doi.org/10.1111/j.1469-8986.1994.tb01020.x First citation in articleCrossrefGoogle Scholar

  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O. & Karjalainen, P. A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113, 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024 First citation in articleCrossrefGoogle Scholar

  • Tarvainen, M. P., Ranta-Aho, P. O. & Karjalainen, P. A. (2002). An advanced detrending method with application to HRV analysis. IEEE Transactions on Biomedical Engineering, 49, 172–175. https://doi.org/10.1109/10.979357 First citation in articleCrossrefGoogle Scholar

  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. (2006). On the importance of inhibition: Central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose Response, 4, 2–21. https://doi.org/10.2203/dose-response.004.01.002 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Ahs, F., Fredrikson, M., Sollers, J. J., 3rd & Wager, T. D. (2012). A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neuroscience and Biobehavioral Reviews, 36, 747–756. https://doi.org/10.1016/j.neubiorev.2011.11.009 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F., Hansen, A. L., Saus-Rose, E. & Johnsen, B. H. (2009). Heart rate variability, prefrontal neural function and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Annals of Behavioral Medicine, 37, 141–153. https://doi.org/10.1007/s12160-009-9101-z First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61, 201–216. https://doi.org/10.1016/S0165-0327(00)00338-4 First citation in articleCrossrefGoogle Scholar

  • Thayer, J. F. & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Review, 33, 81–88. https://doi.org/10.1016/j.neubiorev.2008.08.004 First citation in articleCrossrefGoogle Scholar

  • Whiteside, S. P. & Lynam, D. R. (2001). The five factor model and impulsivity: Using a structural model of personality to understand impulsivity. Personality and Individual Differences, 30, 669–689. https://doi.org/10.1016/S0191-8869(00)00064-7 First citation in articleCrossrefGoogle Scholar

  • Williams, D. P., Thayer, J. F. & Koenig, J. (2016). Resting cardiac vagal tone predicts intraindividual reaction time variability during an attention task in a sample of young and healthy adults. Psychophysiology, 53, 1843–1851. https://doi.org/10.1111/psyp.12739 First citation in articleCrossrefGoogle Scholar

  • Wilson, B. A., Alderman, N., Burgess, P. W., Emslie, H. & Evans, J. J. (1996). Behavioural assessment of the dysexecutive syndrome. Bury St. Edmunds, UK: Thames Valley Test Company. First citation in articleGoogle Scholar