Skip to main content
Articles

A New View on the MMN and Attention Debate

The Role of Context in Processing Auditory Events

Published Online:https://doi.org/10.1027/0269-8803.21.34.164

The question of whether the mismatch negativity (MMN) is modulated by attention has been debated for over a decade. Although the MMN is widely regarded as reflecting a preattentive auditory process, many studies have shown attention effects on MMN. So, what does preattentive mean if attention can modulate the MMN? To understand the function of MMN in auditory processing, we need to shed new light on the “MMN and attention” debate. This review will discuss the apparent paradox that MMN can be modulated by attention and still be considered an attention-independent process, and provide a new framework for viewing the MMN system. The new model proposes that the principal factor governing MMN is the sound context. MMN generation relies on multiple processing mechanisms that are part of a larger system of auditory scene analysis.

References

  • Alain, C. , Woods, D.L. (1997). Attention modulates auditory pattern memory as indexed by event-related potentials. Psychophysiology, 34, 534–546. First citation in articleCrossrefGoogle Scholar

  • Arnott, S.R. , Alain, C. (2002). Stepping out of the spotlight: MMN attenuation as a function of distance from the attended location. Neuroreport, 13, 2209–2212. First citation in articleCrossrefGoogle Scholar

  • Atienza, M. , Cantero, J.L. , Grau, C. , Gomez, C. , Dominguez-Marin, E. , Escera, C. (2003). Effects of temporal encoding on auditory object formation: A mismatch negativity study. Cognitive Brain Research, 16, 359–371. First citation in articleCrossrefGoogle Scholar

  • Bregman, A.S. (1990). Auditory scene analysis. Cambridge, MA: MIT Press. First citation in articleCrossrefGoogle Scholar

  • Dalebout, S.D. , Stack, B. (1999). Mismatch negativity to acoustic differences not differentiated behaviorally. Journal of the American Academy of Audiology, 10, 388–399. First citation in articleCrossrefGoogle Scholar

  • Deouell, L.Y. (2007). The frontal generator of the mismatch negativity revisited. Journal of Psychophysiology, 21, 188–203. First citation in articleLinkGoogle Scholar

  • Escera, C. , Alho, K. , Schröger, E. , Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology and Neuro-Otology, 5, 151–166. First citation in articleCrossrefGoogle Scholar

  • Friedman, D. , Cycowicz, Y.M. , Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373. First citation in articleCrossrefGoogle Scholar

  • Gomes, H. , Molholm, S. , Ritter, W. , Kurtzberg, D. , Cowan, N. , Vaughan, H.G., Jr. (2000). Mismatch negativity in children and adults, and effects of an attended task. Psychophysiology, 37, 807–816. First citation in articleCrossrefGoogle Scholar

  • Grimm, S. , Schröger, E. (2005). Preattentive and attentive processing of temporal and frequency characteristics within long sounds. Cognitive Brain Research, 25, 711–721. First citation in articleCrossrefGoogle Scholar

  • Javitt, D.C. , Grochowski, S. , Shelley, A.M. , Ritter, W. (1998). Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology, 108(2), 143–153. First citation in articleCrossrefGoogle Scholar

  • Javitt, D.C. , Steinschneider, M. , Schroeder, C.E. , Arezzo, J.C. (1996). Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Science, 93, 11962–11967. First citation in articleGoogle Scholar

  • Javitt, D.C. , Steinschneider, M. , Schroeder, C.E. , Vaughan, H.G. Jr. , Arezzo, J.C. (1994). Detection of stimulus deviance within primate primary auditory cortex: Intracortical mechanisms of mismatch negativity (MMN) generation. Brain Research, 667, 192–200. First citation in articleCrossrefGoogle Scholar

  • Knight, R.T. , Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15, 3–13. First citation in articleCrossrefGoogle Scholar

  • Kraus, N. , McGee, T.J. , Carrell, T.D. , Zecker, S.G. , Nicol, T.G. , Koch, D.B. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science, 273, 971–973. First citation in articleCrossrefGoogle Scholar

  • Kujala, T. , Näätänen, R. (2001). The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neuroscience and Biobehavioral Reviews, 25, 535–543. First citation in articleCrossrefGoogle Scholar

  • McKenzie, D.N. , Barry, R.J. (2006). The independence of memory traces of attended and unattended stimuli. Cerebral Cortex, 16, 1566–1570. First citation in articleCrossrefGoogle Scholar

  • Müller, D. , Schröger, E. (2006). Temporal grouping affects the automatic processing of deviant sounds. Biological Psychology, in press. First citation in articleGoogle Scholar

  • Müller, D. , Widmann, A. , Schröger, E. (2005). Auditory streaming affects the processing of successive deviant and standard sounds. Psychophysiology, 42, 668–676. First citation in articleCrossrefGoogle Scholar

  • Müller-Gass, A. , Stelmack, R.M. , Campbell, K.B. (2005). “... and were instructed to read a self-selected book while ignoring the auditory stimuli”: The effects of task demands on the mismatch negativity. Clinical Neurophysiology, 116, 2142–2152. First citation in articleCrossrefGoogle Scholar

  • Müller-Gass, A. , Stelmack, R.M. , Campbell, K.B. (2006). The effect of visual task difficulty and attentional direction on the detection of acoustic change as indexed by the mismatch negativity. Brain Research, 1078, 112–130. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Näätänen, R. (2003). Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology, 48, 179–188. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Gaillard, A.W.K. , Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Paavilainen, P. , Tiitinen, H. , Jiang, D. , Alho, K. (1993). Attention and mismatch negativity. Psychophysiology, 30, 436–450. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Simpson, R. , Loveless, N.E. (1982). Stimulus deviance and evoked potentials. Biological Psychology, 14, 53–98. First citation in articleCrossrefGoogle Scholar

  • Nager, W. , Teder-Salejarvi, W. , Kunze, S. , Munte, T.F. (2003). Preattentive evaluation of multiple perceptual streams in human audition. Neuroreport, 14, 871–4. First citation in articleCrossrefGoogle Scholar

  • Novak, G. , Ritter, W. , Vaughan, H.G. Jr. (1992). The chronometry of attention-modulated processing and automatic mismatch detection. Psychophysiology, 29, 412–430. First citation in articleCrossrefGoogle Scholar

  • Paavilainen, P. , Tiitinen, H. , Alho, K. , Näätänen, R. (1993). Mismatch negativity to slight pitch changes outside strong attentional focus. Biological Psychology, 37, 23–41. First citation in articleCrossrefGoogle Scholar

  • Picton, D.W. , Alain, C. , Otten, L. , Ritter, W. , Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology and Neuro-Otology, 5, 111–139. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Antila, S. , Winkler, I. (2001). MMN is unaffected by top-down predictive information. NeuroReport, 12, 2209–2213. First citation in articleGoogle Scholar

  • Ritter, W. , Deacon, D. , Gomes, H. , Javitt, D.C. , Vaughan, H.G., Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review. Ear and Hearing, 16, 52–67. First citation in articleCrossrefGoogle Scholar

  • Ritter, W. , Sussman, E. , Molholm, S. (2000). Evidence that the mismatch negativity system works on the basis of objects. NeuroReport, 11, 61–63. First citation in articleGoogle Scholar

  • Ritter, W. , Sussman, E. , Deacon, D. , Cowan, N. , Vaughan, H.G., Jr. (1999). Two cognitive systems simultaneously prepared for opposite events. Psychophysiology, 36, 835–838. First citation in articleCrossrefGoogle Scholar

  • Scherg, M. , Vajsar, J. , Picton, T.W. (1989). A source analysis of the late human auditory evoked potentials. Journal of Cognitive Neuroscience, 1, 336–355. First citation in articleCrossrefGoogle Scholar

  • Shalgi, S. , Deouell, L.Y. (2007). Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia, 45, 1878–1888. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. (2005). Integration and segregation in auditory scene analysis. Journal of the Acoustical Society of America, 117, 1285–1298. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Bregman, A.S. , Wang, W.J. , Khan, F.J. (2005). Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds in multistream auditory environments. Cognitive, Affective, and Behavioral Neuroscience, 5(1), 93–110. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Čeponienė, R. , Shestakova, A. , Näätänen, R. , Winkler, I. (2001). Auditory stream segregation processes operate similarly in school-aged children as adults. Hearing Research, 153, 108–114. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Gumenyuk, V. (2005). Organization of sequential sounds in auditory memory. NeuroReport, 16, 1519–1523. First citation in articleGoogle Scholar

  • Sussman, E. , Horváth, J. , Winkler, I. , Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69, 136–152. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Kujala, T. , Halmetoja, J. , Lyytinen, H. , Alku, P. , Näätänen, R. (2004). Automatic and controlled processing of acoustic and phonetic contrasts. Hearing Research, 190, 128–140. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Ritter, W. , Vaughan, H.G., Jr. (1998a). Attention affects the organization of auditory input associated with the mismatch negativity system. Brain Research, 789, 130–138. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Ritter, W. , Vaughan, H.G., Jr. (1998b). Stimulus predictability and the mismatch negativity system. NeuroReport, 9, 4167–4170. First citation in articleGoogle Scholar

  • Sussman, E. , Ritter, W. , Vaughan, H.G., Jr. (1999). An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology, 36, 22–34. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Steinschneider, M. (2006). Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Research, 1075(1), 165–174. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. (2001). Dynamic sensory updating in the auditory system. Cognitive Brain Research, 12, 431–439. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. , Huotilainen, M. , Ritter, W. , Näätänen, R. (2002). Top-down effects on the initially stimulus-driven auditory organization. Cognitive Brain Research, 13, 393–405. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Sheridan, K. , Kreuzer, J. , Winkler, I. (2003a). Representation of the standard: Stimulus context effects on the process generating the mismatch negativity component of event-related brain potentials. Psychophysiology, 40, 465–471. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. , Schröger, E. (2003b). Top-down control over involuntary attention-switching in the auditory modality. Psychonomic Bulletin and Review, 10, 630–637. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. , Wang, W.J. (2003c). MMN and attention: Competition for deviance detection. Psychophysiology, 40, 430–435. First citation in articleCrossrefGoogle Scholar

  • Szymanski, M. , Yund, E.W. , Woods, D.L. (1999). Phonemes, intensity, and attention: Differential effects on the mismatch negativity (MMN). Journal of Acoustical Society of America, 106, 3492–3505. First citation in articleCrossrefGoogle Scholar

  • Treijo, L.J. , Ryan-Jones, D.L. , Kramer, A.F. (1995). Attentional modulation of the mismatch negativity elicited by frequency differences between binaurally presented tone bursts. Psychophysiology, 32, 319–328. First citation in articleCrossrefGoogle Scholar

  • Ulanovsky, N. , Las, L. , Farkas, D. , Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24, 10440–10453. First citation in articleCrossrefGoogle Scholar

  • Ulanovsky, N. , Las, L. , Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398. First citation in articleCrossrefGoogle Scholar

  • van Zuijen, T. , Sussman, E. , Winkler, I. , Näätänen, R. , Tervaniemi, M. (2005). Auditory organization of sound sequences by a temporal or numerical regularity – A mismatch study comparing musicians and nonmusicians. Cognitive Brain Research, 23, 270–76. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Horváth, J. , Teder-Sälejärvi, W.A. , Näätänen, R. , Sussman, E. (2003). Human auditory cortex tracks task-irrelevant sound sources in auditory cortex. NeuroReport, 14, 2053–2056. First citation in articleGoogle Scholar

  • Winkler, I. , Korzyukov, O. , Gumenyuk, V. , Cowan, N. , Linkenkaer-Hansen, K. , Ilmoniemi, R.J. et al. (2002). Temporary and longer-term retention of acoustic information. Psychophysiology, 39, 530–534. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Sussman, E. , Tervaniemi, M. , Ritter, W. , Horváth, J. , Näätänen, R. (2003). Preattentive auditory context effects. Cognitive, Affective, and Behavioral Neuroscience, 3(1), 57–77. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , van Zuijen, T. , Sussman, E. , Horváth, J. , Näätänen, R. (2006). Object representation in the human auditory system. European Journal of Neuroscience, 24, 625–634. First citation in articleCrossrefGoogle Scholar

  • Woldorff, M.G. , Hackley, S.A. , Hillyard, S.A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28, 30–42. First citation in articleCrossrefGoogle Scholar

  • Woldorff, M. , Hillyard, S. , Gallen, C.C. , Hampson, S.R. , Bloom, F.E. (1998). Magnetoencephalographic recordings demonstrate attentional modulation of mismatch-related neural activity in human auditory cortex. Psychophysiology, 35, 283–292. First citation in articleCrossrefGoogle Scholar

  • Woods, D.L. (1990). The physiological basis of selective attention: Implications of event-related potential studies. In J.W. Rohrbaugh, R. Parasuranam, R. Johnson, Jr. (Eds.), Event-related potentials: Basic issues and applications (pp. 178–209). New York: Oxford University Press. First citation in articleGoogle Scholar

  • Yabe, H. , Winkler, I. , Czigler, I. , Koyama, S. , Kakigi, R. , Sutoh, T. , et al. (2001). Organizing sound sequences in the human brain: The interplay of auditory streaming and temporal integration. Cognitive Brain Research, 897(1–2), 222–227. First citation in articleCrossrefGoogle Scholar

  • Yucel, G. , Petty, C. , McCarthy, G. , Belger, A. (2005). Graded visual attention modulates brain responses evoked by task-irrelevant auditory pitch changes. Journal of Cognitive Neuroscience, 17, 1819–28. First citation in articleCrossrefGoogle Scholar