Skip to main content
Articles

Interpreting the Mismatch Negativity

Published Online:https://doi.org/10.1027/0269-8803.21.34.147

The widely accepted “memory-mismatch” interpretation of the mismatch negativity (MMN) event-related brain potential (ERP) suggests that an MMN is elicited when an acoustic event deviates from a memory record describing the immediate history of the sound sequence. The first variant of the memory-mismatch theory suggested that the memory underlying MMN generation was a strong auditory sensory memory trace, which encoded the repetitive standard sound. This “trace-mismatch” explanation of MMN has been primarily based on results obtained in the auditory oddball paradigm. However, in recent years, MMN has been observed in stimulus paradigms containing no frequently repeating sound. We now suggest a different variant of the memory-mismatch interpretation of MMN in order to provide a unified explanation of all MMN phenomena. The regularity-violation explanation of MMN assumes that the memory records retaining the history of auditory stimulation are regularity representations. These representations encode rules extracted from the regular intersound relationships, which are mapped to the concrete sound sequence by finely detailed auditory sensory information. Auditory events are compared with temporally aligned predictions drawn from the regularity representations (predictive models) and the observable MMN response reflects a process updating the representations of those detected regularities whose prediction was mismatched by the acoustic input. It is further suggested that the auditory deviance detection system serves to organize sound in the brain: The predictive models maintained by the MMN-generating process provide the basis of temporal grouping, a crucial step in the formation of auditory objects.

References

  • Aaltonen, O. , Tuomainen, J. , Laine, M. , Niemi, P. (1993). Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN). Brain and Language, 44, 139–152. First citation in articleCrossrefGoogle Scholar

  • Alain, C. , Arnott, S.R. , Picton, T.W. (2001). Bottom-up and top-down influences on auditory scene analysis: Evidence from event-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 27, 1072–1089. First citation in articleCrossrefGoogle Scholar

  • Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear and Hearing, 16, 38–51. First citation in articleCrossrefGoogle Scholar

  • Allen, J. , Kraus, N. , Bradlow, A. (2000). Neural representation of consciously imperceptible speech sound differences. Perception and Psychophysics, 62, 1383–1393. First citation in articleCrossrefGoogle Scholar

  • Amenedo, E. , Escera, C. (2000). The accuracy of sound duration representation in the human brain determines the accuracy of behavioural perception. European Journal of Neuroscience, 12, 2570–2574. First citation in articleCrossrefGoogle Scholar

  • Baldeweg, T. (2006). Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends in Cognitive Sciences, 10, 93–94. First citation in articleCrossrefGoogle Scholar

  • Baldeweg, T. , Klugman, A. , Gruzelier, J. , Hirsch, S.R. (2004). Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophrenia Research, 69, 203–217. First citation in articleCrossrefGoogle Scholar

  • Böttcher Gandor, C. , Ullsperger, P. (1992). Mismatch negativity in event related potentials to auditory stimuli as a function of varying interstimulus interval. Psychophysiology, 29, 546–550. First citation in articleCrossrefGoogle Scholar

  • Brattico, E. , Näätänen, R. , Tervaniemi, M. (2001). Context effects on pitch perception in musicians and nonmusicians: Evidence from ERP recordings. Music Perception, 19, 1–24. First citation in articleCrossrefGoogle Scholar

  • Bregman, A.S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press. First citation in articleCrossrefGoogle Scholar

  • Broadbent, D.E. (1958). Perception and communication. New York: Pergamon. First citation in articleCrossrefGoogle Scholar

  • Budd, T.W. , Barry, R.J. , Gordon, E. , Rennie, C. , Michie, P.T. (1998). Decrement of the N1 auditory event-related potential with stimulus repetition: Habituation vs. refractoriness. International Journal of Psychophysiology, 31, 51–68. First citation in articleCrossrefGoogle Scholar

  • Carlyon, R.P. , Cusack, R. , Foxton, J.M. , Robertson, I.H. (2001). Effects of attention and unilateral neglect on auditory stream segregation. Journal of Experimental Psychology: Human Perception and Performance, 27, 115–127. First citation in articleCrossrefGoogle Scholar

  • Carral, V. , Huotilainen, M. , Ruusuvirta, T. , Fellman, V. , Nätätänen, R. , Escera, C. (2005). A kind of auditory “primitive intelligence” already present at birth. European Journal of Neuroscience, 21, 3201–3204. First citation in articleCrossrefGoogle Scholar

  • Coltheart, M. (1984). Sensory memory – A tutorial review. In H. Bouman, D.G. Bouwhuis (Eds.), Attention & performance X: Control of language processes (pp. 259–285). Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96, 341–370. First citation in articleCrossrefGoogle Scholar

  • Cowan, N. (1995). Attention and memory. An integrated framework. Oxford: Oxford University Press. First citation in articleGoogle Scholar

  • Cowan, N. , Saults, S. , Nugent, L. (2001). The ravages of absolute and relative amounts of time on memory. In H.L. Roediger, III , J.S. Nairne, I. Neath, A. Surprenant (Eds.), The nature of remembering: Essays in honor of Robert G. Crowder (pp. 315–330). Washington, DC: American Psychological Association. First citation in articleCrossrefGoogle Scholar

  • Cowan, N. , Winkler, I. , Teder, W. , Näätänen, R. (1993). Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). Experimental Psychology: Human Perception and Performance, 19, 909–921. First citation in articleGoogle Scholar

  • Csépe, V. (1995). On the origin and development of the mismatch negativity. Ear and Hearing, 16, 91–104. First citation in articleCrossrefGoogle Scholar

  • Czigler, I. , Winkler, I. (1996). Preattentive auditory change detection relies on unitary sensory memory representations. NeuroReport, 7, 2413–2417. First citation in articleGoogle Scholar

  • Deacon, D. , Nousak, J.M. , Pilotti, M. , Ritter, W. , Yang, C.-M. (1998). Automatic change detection: Does the auditory system use representations of individual stimulus features or gestalts? Psychophysiology, 35, 413–419. First citation in articleCrossrefGoogle Scholar

  • Denham, S.L. , Winkler, I. (2006). The role of predictive models in the formation of auditory streams. Journal of Neurophysiology – Paris, 100, 154–170. First citation in articleCrossrefGoogle Scholar

  • Donchin, E. , Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374. First citation in articleCrossrefGoogle Scholar

  • Escera, C. , Alho, K. , Schröger, E. , Winkler, I. (2000). Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiology and Neuro-Otology, 5, 151–166. First citation in articleCrossrefGoogle Scholar

  • Escera, C. , Corral, M.J. (2007). Role of mismatch negativity and novelty-P3 in involuntary auditory attention. Journal of Psychophysiology, 21, 251–264. First citation in articleLinkGoogle Scholar

  • Fodor, J.A. (1983). The modularity of mind. Cambridge, MA: MIT Press. First citation in articleCrossrefGoogle Scholar

  • Ford, J.M. , Hillyard, S.A. (1981). Event-related potentials, ERPs, to interruptions of steady rhythm. Psychophysiology, 18, 322–330. First citation in articleCrossrefGoogle Scholar

  • Friedman, D. , Cycowicz, Y.M. , Gaeta, H. (2001). The novelty P3: An event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neuroscience and Biobehavioral Reviews, 25, 355–373. First citation in articleCrossrefGoogle Scholar

  • Friston, K. (2005). A theory of cortical responses. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 360, 815–836. First citation in articleCrossrefGoogle Scholar

  • Gaeta, H. , Friedman, D. , Ritter, W. , Cheng, J. (2001). The effect of perceptual grouping on the mismatch negativity. Psychophysiology, 38, 316–324. First citation in articleCrossrefGoogle Scholar

  • Gardiner, J.M. , Cowan, N. (2003). Modality effects. In J.H. Byrne, H. Eichenbaum, H. Roediger, III , R.F. Thompson (Eds.), Learning and memory (2nd edition, pp. 397–400). New York: Macmillan. First citation in articleGoogle Scholar

  • Garrido, M.I. , Kilner, J.M. , Kiebel, S.J. , David, O. , Stephan, K.E. , Friston, K.J. (2006). Dynamic causal modelling of the mismatch negativity. In Y. Styrov, F. Pulvermüller (Eds.), Fourth conference on mismatch negativity (MMN) and its clinical and scientific applications, programme and abstract book (p. 61). Cambridge: Medical Research Council, Cognition and Brain Science Unit. First citation in articleGoogle Scholar

  • Gomes, H. , Bernstein, R. , Ritter, W. , Vaughan, H.G., Jr. , Miller, J. (1997). Storage of feature conjunctions in transient auditory memory. Psychophysiology, 34, 712–716. First citation in articleCrossrefGoogle Scholar

  • Grau, C. , Escera, C. , Yago, E. , Polo, M.D. (1998). Mismatch negativity and auditory sensory memory evaluation: A new faster paradigm. NeuroReport, 9, 2451–2456. First citation in articleGoogle Scholar

  • Gumenyuk, V. , Korzyukov, O. , Alho, K. , Winkler, I. , Paavilainen, P. , Näätänen, R. (2003). Electric brain responses indicate preattentive detection of abstract acoustic regularities in children. NeuroReport, 14, 1411–1415. First citation in articleGoogle Scholar

  • Hari, R. , Hämäläinen, M. , Ilmoniemi, R. , Kaukoranta, E. , Reinikainen, K. , Salminen et al. (1984). Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neuroscience Letters, 50, 127–132. First citation in articleCrossrefGoogle Scholar

  • Harris, J.D. (1952). The decline of pitch discrimination with time. Journal of Experimental Psychology, 432, 96–99. First citation in articleCrossrefGoogle Scholar

  • Horváth, J. , Czigler, I. , Sussman, E. , Winkler, I. (2001). Simultaneously active preattentive representations of local and global rules for sound sequences. Cognitive Brain Research, 12, 131–144. First citation in articleCrossrefGoogle Scholar

  • Horváth, J. , Winkler, I. (2004). How the human auditory system treats repetition amongst change. Neuroscience Letters, 368, 157–161. First citation in articleCrossrefGoogle Scholar

  • Jääskeläinen, I.P. , Ahveninen, J. , Bonmassar, G. , Dale, A.M. , Ilmoniemi, R.J. , Levänen, S. et al. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the United States of America, 17, 6809–6814. First citation in articleGoogle Scholar

  • Jääskeläinen, I.P. , Hautamäki, M. , Näätänen, R. , Ilmoniemi, R.J. (1999). Temporal span of human echoic memory and mismatch negativity: Revisited. NeuroReport, 10, 1305–1308. First citation in articleGoogle Scholar

  • Jacobsen, T. , Schröger, E. (2001). Is there preattentive memory-based comparison of pitch? Psychophysiology, 38, 723–727. First citation in articleCrossrefGoogle Scholar

  • Javitt, D.C. , Steinschneider, M. , Schroeder, C.E. , Arezzo, J.C. (1996). Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 93, 11962–11967. First citation in articleGoogle Scholar

  • Koelsch, S. , Schröger, E. , Tervaniemi, M. (1999). Superior attentive and preattentive auditory processing in musicians. Neuroreport, 10, 1309–1313. First citation in articleCrossrefGoogle Scholar

  • Korzyukov, O. , Winkler, I. , Gumenyuk, V. , Alho, K. , Näätänen, R. (2003). Processing abstract auditory features in the human auditory cortex. Neuroimage, 20, 2245–2258. First citation in articleCrossrefGoogle Scholar

  • Kraus, N. , Koch, D.B. , McGee, T.J. , Nicol, T.G. , Cunningham, J. (1999). Speech-sound discrimination in school-age children: Psychophysical and neurophysiologic measures. Journal of Speech, Language, and Hearing Research, 42, 1042–1060. First citation in articleGoogle Scholar

  • Kraus, N. , McGee, T.J. , Carrell, T.D. , Zecker, S.G. , Nicol, T.G. , Koch, D.B. (1996). Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science, 273, 971–973. First citation in articleCrossrefGoogle Scholar

  • Kubovy, M. , Van Valkenburg, D. (2001). Auditory and visual objects. Cognition, 80, 97–126. First citation in articleCrossrefGoogle Scholar

  • Kujala, T. , Tervaniemi, M. , Schröger, E. (2007). The mismatch negativity in cognitive and clinical neuroscience: Theoretical and methodological considerations. Biological Psychology, 74, 1–19. First citation in articleCrossrefGoogle Scholar

  • Lang, H.A. , Nyrke, T. , Ek, M. , Aaltonen, O. , Raimo, I. , Näätänen, R. (1990). Pitch discrimination performance and auditory event related potentials. In C.H.M. Brunia, A.W.K. Gaillard, A. Kok, G. Mulder, M.N. Verbaten (Eds.), Psychophysiological brain research (Vol. 1, pp. 294–298). Tilburg, The Netherlands: Tilburg University Press. First citation in articleGoogle Scholar

  • Mäntysalo, S. , Näätänen, R. (1987). The duration of a neuronal trace of an auditory stimulus as indicated by event-related potentials. Biological Psychology, 24, 183–195. First citation in articleCrossrefGoogle Scholar

  • Massaro, D.W. (1975). Experimental psychology and information processing. Chicago: Rand McNally. First citation in articleGoogle Scholar

  • May, P. , Tiitinen, H. , Ilmoniemi, R.J. , Nyman, G. , Taylor, J.G. , Näätänen, R. (1999). Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 6, 99–120. First citation in articleCrossrefGoogle Scholar

  • Molholm, S. , Gomes, H. , Lobosco, J. , Deacon, D. , Ritter, W. (2004). Feature versus gestalt representation of stimuli in the mismatch negativity system of 7- to 9-year-old children. Psychophysiology, 41, 385–393. First citation in articleCrossrefGoogle Scholar

  • Morr, M.L. , Shafer, V.L. , Kreuzer, J.A. , Kurtzberg, D. (2002). Maturation of mismatch negativity in typically developing infants and preschool children. Ear and Hearing, 23, 118–136. First citation in articleCrossrefGoogle Scholar

  • Müller, D. , Schröger, E. (2007). Temporal grouping affects the automatic processing of deviant sounds. Biological Psychology, 74, 358–364. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. (1984). In search of a short duration memory trace of a stimulus in the human brain. In L. Pulkkinen, P. Lyytinen (Eds.), Human action and personality. Essays in honor of Martti Takala. Jyväskylä studies in education, psychology, and social research 54 (pp. 29–43). Jyväskylä: University of Jyväskylä. First citation in articleGoogle Scholar

  • Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201–288. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. (1992). Attention and brain function. Hillsdale, NJ: Erlbaum. First citation in articleGoogle Scholar

  • Näätänen, R. (2003). Mismatch negativity: Clinical research and possible applications. International Journal of Psychophysiology, 48, 179–188. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Alho, K. (1995). Mismatch negativity: A unique measure of sensory processing in audition. International Journal of Neuroscience, 80, 317–337. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Alho, K. (1997). Mismatch negativity (MMN): The measure for central sound representation accuracy. Audiology and Neuro-Otology, 2, 341–353. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Escera, C. (2000). Mismatch negativity: Clinical and other applications. Audiology and Neuro-Otology, 5, 105–110. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Gaillard, A.W.K. , Mäntysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Jacobsen, T. , Winkler, I. (2005). Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 42, 25–32. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Paavilainen, P. , Alho, K. , Reinikainen, K. , Sams, M. (1987). Interstimulus interval and the mismatch negativity. In C. Barber, T. Blum (Eds.), Evoked potentials III (pp. 392–397). London: Butterworths. First citation in articleGoogle Scholar

  • Näätänen, R. , Paavilainen, P. , Alho, K. , Reinikainen, K. , Sams, M. (1989). Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neuroscience Letters, 98, 217–221. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Sams, M. , Järvilehto, T. , Soininen, K. (1983). Probability of deviant stimulus and event-related brain potentials. In R. Sinz, M.R. Rosenzweig (Eds.), Psychophysiology 1980 (pp. 397–405). Jena: VEB Gustav Fischer Verlag and Amsterdam: Elsevier Biomedical Press. First citation in articleGoogle Scholar

  • Näätänen, R. , Schröger, E. , Karakas, S. , Tervaniemi, M. , Paavilainen, P. (1993). Development of a memory trace for a complex sound in the human brain. NeuroReport, 4, 503–506. First citation in articleGoogle Scholar

  • Näätänen, R. , Tervaniemi, M. , Sussman, E. , Paavilainen, P. , Winkler, I. (2001). “Primitive intelligence” in the auditory cortex. Trends in Neurosciences, 24, 283–288. First citation in articleCrossrefGoogle Scholar

  • Näätänen, R. , Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125, 826–859. First citation in articleCrossrefGoogle Scholar

  • Nordby, H. , Roth, W.T. , Pfefferbaum, A. (1988a). Event-related potentials to breaks in sequences of alternating pitches or interstimulus intervals. Psychophysiology, 25, 262–268. First citation in articleCrossrefGoogle Scholar

  • Nordby, H. , Roth, W.T. , Pfefferbaum, A. (1988b). Event-related potentials to time deviant and pitch deviant tones. Psychophysiology, 25, 249–261. First citation in articleCrossrefGoogle Scholar

  • Nousak, J.M. , Deacon, D. , Ritter, W. , Vaughan, H.G., Jr. (1996). Storage of information in transient auditory memory. Cognitive Brain Research, 4, 305–317. First citation in articleCrossrefGoogle Scholar

  • Oceák, A. , Winkler, I. , Sussman, E. , Alho, K. (2006). Loudness summation and the mismatch negativity event-related brain potential in humans. Psychophysiology, 43, 13–20. First citation in articleCrossrefGoogle Scholar

  • Opitz, B. , Rinne, T. , Mecklinger, A. , von Cramon, D.Y. , Schröger, E. (2002). Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage, 15, 167–174. First citation in articleCrossrefGoogle Scholar

  • Paavilainen, P. , Arajärvi, P. , Takegata, R. (2007). Preattentive detection of nonsalient contingencies between auditory features. NeuroReport, 18, 159–163. First citation in articleGoogle Scholar

  • Paavilainen, P. , Simola, J. , Jaramillo, M. , Näätänen, R. , Winkler, I. (2001). Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN). Psychophysiology, 38, 359–365. First citation in articleCrossrefGoogle Scholar

  • Pekkonen, E. (2000). Mismatch negativity in aging and in Alzheimer’s and Parkinson’s diseases. Audiology and Neuro-Otology, 5, 216–224. First citation in articleCrossrefGoogle Scholar

  • Pettigrew, C.M. , Murdoch, B.E. , Ponton, C.W. , Finnigan, S. , Alku, P. , Kei, J. et al. (2004). Automatic auditory processing of English words as indexed by the mismatch negativity, using a multiple deviant paradigm. Ear and Hearing, 25, 284–301. First citation in articleCrossrefGoogle Scholar

  • Picton, T.W. , Alain, C. , Otten, L. , Ritter, W. , Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology and Neuro-Otology, 5, 111–139. First citation in articleCrossrefGoogle Scholar

  • Pressnitzer, D. , Hupé, J.M. (2006). Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Current Biology, 16, 1351–1357. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Alho, K. , Ilmoniemi, R.J. , Virtanen, J. , Näätänen, R. (2000). Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage, 12, 14–19. First citation in articleCrossrefGoogle Scholar

  • Rinne, T. , Särkkä, A. , Degerman, A. , Schröger, E. , Alho, K. (2006). Two separate mechanisms underlie auditory change detection and involuntary control of attention. Brain Research, 1077, 135–143. First citation in articleCrossrefGoogle Scholar

  • Ritter, W. , Deacon, D. , Gomes, H. , Javitt, D.C. , Vaughan, H.G. Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review. Ear and Hearing, 16, 52–67. First citation in articleCrossrefGoogle Scholar

  • Ritter, W. , Gomes, H. , Cowan, N. , Sussman, E. , Vaughan, H.G. Jr. (1998). Reactivation of a dormant representation of an auditory stimulus feature. Journal of Cognitive Neuroscience, 10, 605–614. First citation in articleCrossrefGoogle Scholar

  • Ritter, W. , Sussman, E. , Molholm, S. (2000). Evidence that the mismatch negativity system works on the basis of objects. NeuroReport, 11, 61–63. First citation in articleGoogle Scholar

  • Ritter, W. , Sussman, E. , Molholm, S. , Foxe, J.J. (2002). Memory reactivation or reinstatement and the mismatch negativity. Psychophysiology, 39, 158–165. First citation in articleCrossrefGoogle Scholar

  • Saarinen, J. , Paavilainen, P. , Schröger, E. , Tervaniemi, M. , Näätänen, R. (1992). Representation of abstract attributes of auditory stimuli in the human brain. NeuroReport, 3, 1149–1151. First citation in articleGoogle Scholar

  • Sabri, M. , Campbell, K.B. (2001). Effects of sequential and temporal probability of deviant occurrence on mismatch negativity. Cognitive Brain Research, 12, 171–180. First citation in articleCrossrefGoogle Scholar

  • Sams, M. , Alho, K. , Näätänen, R. (1983). Sequential effects in the ERP in discriminating two stimuli. Biological Psychology, 17, 41–58. First citation in articleCrossrefGoogle Scholar

  • Sams, M. , Alho, K. , Näätänen, R. (1984). Short term habituation and dishabituation of the mismatch negativity of the ERP. Psychophysiology, 21, 434–441. First citation in articleCrossrefGoogle Scholar

  • Sams, M. , Hari, R. , Rif, J. , Knuutila, J. (1993). The human auditory sensory memory trace persists about 10 s: Neuromagnetic evidence. Journal of Cognitive Neuroscience, 5, 363–370. First citation in articleCrossrefGoogle Scholar

  • Sams, M. , Paavilainen, P. , Alho, K. , Näätänen, R. (1985). Auditory frequency discrimination and event related potentials. Electroencephalography and Clinical Neurophysiology, 62, 437–448. First citation in articleCrossrefGoogle Scholar

  • Scherg, M. , Vajsar, J. , Picton, T.W. (1989). A source analysis of the late human auditory evoked potentials. Journal of Cognitive Neuroscience, 1, 336–355. First citation in articleCrossrefGoogle Scholar

  • Schröger, E. (1997). On the detection of auditory deviants: A preattentive activation model. Psychophysiology, 34, 245–257. First citation in articleCrossrefGoogle Scholar

  • Schröger, E. , Wolff, C. (1996). Mismatch response to changes in sound location. NeuroReport, 7, 3005–3008. First citation in articleGoogle Scholar

  • Sinkkonen, J. (1999). Information and resource allocation. In R. Baddeley, P. Hancock, P. Földiák (Eds.), Information theory and the brain (pp. 241–254). Cambridge, UK: Cambridge University Press. First citation in articleGoogle Scholar

  • Stefanics, G. , Háden, G. , Huotilainen, M. , Balázs, L. , Sziller, I. , Beke, A. et al. (2007). Auditory temporal grouping in newborn infants. Psychophysiology, 44, 697–702. First citation in articleCrossrefGoogle Scholar

  • Stephan, K.E. , Baldeweg, T. , Friston, K.J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59, 929–939. First citation in articleCrossrefGoogle Scholar

  • Sussman, E.S. (2007). A new view on the MMN and attention debate: The role of context in processing auditory events. Journal of Psychophysiology, 21, 164–175. First citation in articleLinkGoogle Scholar

  • Sussman, E.S. , Bregman, A.S. , Wang, W.J. , Khan, F.J. (2005). Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds within multistream auditory environments. Cognitive, Affective, and Behavioral Neuroscience, 5, 93–110. First citation in articleGoogle Scholar

  • Sussman, E. , Čeponienė, R. , Shestakova, A. , Näätänen, R. , Winkler, I. (2001). Auditory stream segregation processes operate similarly in school-aged children as adults. Hearing Research, 153, 108–114. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Gumenyuk, V. (2005). Organization of sequential sounds in auditory Memory. NeuroReport, 16, 1519–1523. First citation in articleGoogle Scholar

  • Sussman, E. , Horváth, J. , Winkler, I. , Orr, M. (2007). The role of attention in the formation of auditory streams. Perception and Psychophysics, 69, 136–152. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Ritter, W. , Vaughan, H.G. Jr. (1998). Predictability of stimulus deviance and the mismatch negativity. NeuroReport, 9, 4167–4170. First citation in articleGoogle Scholar

  • Sussman, E. , Ritter, W. , Vaughan, H.G., Jr. (1999). An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology, 36, 22–34. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Sheridan, K. , Kreuzer, J. , Winkler, I. (2003). Representation of the standard: Stimulus context effects on the process generating the mismatch negativity component of event-related brain potentials. Psychophysiology, 40, 465–471. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. (2001). Dynamic sensory updating in the auditory system. Cognitive Brain Research, 12, 431–439. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. , Huotilainen, M. , Ritter, W. , Näätänen, R. (2002). Top-down effects on stimulus-driven auditory organization. Cognitive Brain Research, 13, 393–405. First citation in articleCrossrefGoogle Scholar

  • Sussman, E. , Winkler, I. , Ritter, W. , Alho, K. , Näätänen, R. (1999). Temporal integration of auditory stimulus deviance as reflected by the mismatch negativity. Neuroscience Letters, 264, 161–164. First citation in articleCrossrefGoogle Scholar

  • Takegata, R. , Brattico, E. , Tervaniemi, M. , Varyiagina, O. , Näätänen, R. , Winkler, I. (2005). Preattentive representation of feature conjunctions for simultaneous, spatially distributed auditory objects. Cognitive Brain Research, 25, 169–179. First citation in articleCrossrefGoogle Scholar

  • Takegata, R. , Roggia, S.M. , Winkler, I. (2005). Effects of temporal grouping on the memory representation of inter tone relationships. Biological Psychology, 68, 41–60. First citation in articleCrossrefGoogle Scholar

  • Tervaniemi, M. , Saarinen, J. , Paavilainen, P. , Danilova, N. , Näätänen, R. (1994). Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity. Biological Psychology, 38, 157–167. First citation in articleCrossrefGoogle Scholar

  • Tiitinen, H. , May, P. , Reinikainen, K. , Näätänen, R. (1994). Attentive novelty detection in humans is governed by preattentive sensory memory. Nature, 372, 90–92. First citation in articleCrossrefGoogle Scholar

  • van Noorden, L.P.A.S. (1975). Temporal coherence in the perception of tone sequences. PhD thesis, Eindhoven University. First citation in articleGoogle Scholar

  • van Zuijen, T.L. , Sussman, E. , Winkler, I. , Näätänen, R. , Tervaniemi, M. (2005). Auditory organization of sound sequences by a temporal or numerical regularity: A mismatch negativity study comparing musicians and nonmusicians. Cognitive Brain Research, 23, 270–276. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. (1993). Mismatch negativity: An event-related brain potential measure of auditory sensory memory traces. Doctor of philosophy thesis. Helsinki: University of Helsinki. First citation in articleGoogle Scholar

  • Winkler, I. (2003). Change detection in complex auditory environment: Beyond the oddball paradigm. In J. Polich (Ed.), Detection of change: Event-related potential and fMRI findings (pp. 61–81). Boston: Kluwer. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Cowan, N. (2005). From sensory memory to long term memory: Evidence from auditory memory reactivation studies. Experimental Psychology, 52, 3–20. First citation in articleLinkGoogle Scholar

  • Winkler, I. , Cowan, N. , Csépe, V. , Czigler, I. , Näätänen, R. (1996). Interactions between transient and long-term auditory memory as reflected by the mismatch negativity. Journal of Cognitive Neuroscience, 8, 403–415. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Czigler, I. (1998). Mismatch negativity: Deviance detection or the maintenance of the “standards”. NeuroReport, 9, 3809–3813. First citation in articleGoogle Scholar

  • Winkler, I. , Czigler, I. , Jaramillo, M. , Paavilainen, P. , Näätänen, R. (1998). Temporal constraints of auditory event synthesis: Evidence from ERPs. NeuroReport, 9, 495–499. First citation in articleGoogle Scholar

  • Winkler, I. , Karmos, G. , Näätänen, R. (1996). Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Research, 742, 239–252. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Korzykov, O. , Gumenyuk, V. , Cowan, N. , Linkenkaer-Hansen, K. , Alho, K. et al. (2002). Temporary and longer retention of acoustic information. Psychophysiology, 39, 530–534. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Kushnerenko, E. , Horváth, J. , Čeponienė, R. , Fellman, V. , Huotilainen, M. et al. (2003). Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences USA, 100, 1182–1185. First citation in articleGoogle Scholar

  • Winkler, I. , Näätänen, R. (1992). Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans. Neuroscience Letters, 140, 239–242. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Paavilainen, P. , Alho, K. , Reinikainen, K. , Sams, M. , Näätänen, R. (1990). The effect of small variation of the frequent auditory stimulus on the event-related brain potential to the infrequent stimulus. Psychophysiology, 27, 228–235. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Paavilainen, P. , Näätänen, R. (1992). Can echoic memory store two traces simultaneously? A study of event-related brain potentials. Psychophysiology, 29, 337–349. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Reinikainen, K. , Näätänen, R. (1993). Event-related brain potentials reflect traces of the echoic memory in humans. Perception and Psychophysics, 53, 443–449. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Schröger, E. , Cowan, N. (2001). The role of large-scale perceptual organization in the mismatch negativity event-related brain potential. Journal of Cognitive Neuroscience, 13, 59–71. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Sussman, E. , Tervaniemi, M. , Ritter, W. , Horváth, J. , Näätänen, R. (2003). Preattentive auditory context effects. Cognitive, Affective, and Behavioral Neuroscience, 3, 57–77. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Takegata, R. , Sussman, E. (2005). Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Cognitive Brain Research, 25, 291–299. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , Tervaniemi, M. , Näätänen, R. (1997). Two separate codes for missing fundamental pitch in the auditory cortex. Journal of the Acoustical Society of America, 102, 1072–1082. First citation in articleCrossrefGoogle Scholar

  • Winkler, I. , van Zuijen, T. , Sussman, E. , Horváth, J. , Näätänen, R. (2006). Object representation in the human auditory system. European Journal of Neuroscience, 24, 625–634. First citation in articleCrossrefGoogle Scholar

  • Yabe, H. , Sato, Y. , Sutoh, T. , Hiruma, T. , Shinozaki, N. , Nashida, T. et al. (1999). The duration of the integrating windows in auditory sensory memory. Electroencephalography and Clinical Neurophysiology Evoked Potentials and Magnetic Fields, 49(Supplement), 166–169. First citation in articleGoogle Scholar

  • Yabe, H. , Tervaniemi, M. , Reinikainen, K. , Näätänen, R. (1997). Temporal window of integration revealed by MMN to sound omission. NeuroReport, 8, 1971–1974. First citation in articleGoogle Scholar