Skip to main content
Published Online:https://doi.org/10.1024/1421-0185/a000139

What characteristics constitute a “helpful” landmark for wayfinding and how are they represented in the human brain? Experiment 1 compared recognition and wayfinding performance for visual, verbal, and acoustic landmarks (animals) learned in our virtual environment SQUARELAND. Experiment 2 investigated landmark semantics, namely, famous versus unfamiliar buildings. The results showed that, first, the best recognition performance was observed for words (verbal condition) followed by sounds. Performance was worst for the pictorial landmark information. In the wayfinding phase, a similar level of performance was observed for all three modalities. Second, famous buildings were better recognized than unfamiliar ones, indicating a semantic influence. We conclude that nonvisual information may successfully constitute a landmark and discuss this within the context of current research on landmarks and human wayfinding.

References

  • Avraamides, M. N., Loomis, J. M., Klatzky, R. L., Golledge, R. G. (2004). Functional equivalence of spatial representations derived from vision and language: Evidence from allocentric judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 801–814. doi 10.1037/0278-7393.30.4.804 First citation in articleCrossrefGoogle Scholar

  • Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829–839. doi 10.1038/nrn1201 First citation in articleCrossrefGoogle Scholar

  • Baus, J., Wasinger, R., Aslan, I., Krüger, A., Maier, A., Schwartz, T. (2007, January). Auditory perceptible landmarks in mobile navigation. In Proceedings of the 12th International Conference on Intelligent User Interfaces (IUI), Honolulu, HI (pp. 302–304). ISBN 1-59593-481-2 [Refereed conference paper]. First citation in articleGoogle Scholar

  • Blenkhorn, P., Evans, D. G. (1997). A system for enabling blind people to identify landmarks: The sound buoy. IEEE Transactions on Rehabilitation Engineering, 5, 276–278. First citation in articleCrossrefGoogle Scholar

  • Buchner, A., Jansen-Osmann, P. (2008). Is route learning more than serial learning? Spatial Cognition & Computation, 8, 289–305. doi 10.1080/13875860802047201 First citation in articleCrossrefGoogle Scholar

  • Caduff, D., Timpf, S. (2008). On the assessment of landmark salience for human navigation. Cognitive Processing, 9, 249–257. doi 0.1007/s10339-007-0199-2 First citation in articleCrossrefGoogle Scholar

  • Davies, C., Peebles, D. (2010). Spaces or scenes: Map-based orientation in urban environments. Spatial Cognition & Computation, 10, 135–156. doi 10.1080/13875861003759289 First citation in articleCrossrefGoogle Scholar

  • Finney, E. M., Clementz, B. A., Hickok, G., Dobkins, K. R. (2003). Visual stimuli activate auditory cortex in deaf subjects: Evidence from MEG. NeuroReport, 14, 1425–1427. doi 10.1097/00001756-200308060-00004 First citation in articleGoogle Scholar

  • Giudice, N. A., Betty, M. R., Loomis, J. L. (2011). Functional equivalence of spatial images from touch and vision: Evidence from spatial updating in blind and sighted individuals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 621–634. doi 10.1037/a0022331 First citation in articleCrossrefGoogle Scholar

  • Giudice, N. A., Klatzky, R. L., Loomis, J. L. (2009). Evidence for amodal representations after bimodal learning: Integration of haptic-visual layouts into a common spatial image. Spatial Cognition & Computation, 9, 287–304. doi 10.1080/ 13875860903305664 First citation in articleCrossrefGoogle Scholar

  • Görlach, N (2012). Jumbled directions: The influence of sequence on route learning in virtual environments (unpublished bachelor thesis). Justus Liebig University, Gießen, Germany. First citation in articleGoogle Scholar

  • Hamburger, K., Knauff, M. (2011). SQUARELAND: A virtual environment for investigating cognitive processes in human wayfinding. PsychNology, 9, 137–163. First citation in articleGoogle Scholar

  • Hamburger, K., Röser, F. (2011). The meaning of Gestalt for human wayfinding: How much does it cost to switch modalities? Gestalt Theory, 33, 363–382. First citation in articleGoogle Scholar

  • Höferlin, B., Höferlin, M., Raschke, M., Heidemann, G., Weiskopf, D. (2011, June). Interactive auditory display to support situational awareness in video surveillance. Proceedings of the International Conference on Auditory Display (ICAD). Retrieved from www.vis.uni-stuttgart.de/uploads/tx_vispublications/Hoeferlin2011b.pdf First citation in articleGoogle Scholar

  • Janzen, G., van Turennout, M. (2004). Selective neural representation of objects relevant for navigation. Nature Neuroscience, 7, 673–677. doi 10.1038/nn1257 First citation in articleCrossrefGoogle Scholar

  • Kiefer, M., Pulvermüller, F. (2012). Conceptual representations in mind and brain: Theoretical developments, current evidence and future directions. Cortex, 48, 805–825. doi 10.1016/j.cortex.2011.04.006 First citation in articleCrossrefGoogle Scholar

  • Klatzky, R. L., Lippa, Y., Loomis, J. M., Golledge, R. G. (2003). Encoding, learning, and spatial updating of multiple object locations specified by 3-D sound, spatial language, and vision. Experimental Brain Research, 149, 48–61. doi 10.1007/s00221-002-1334-z First citation in articleCrossrefGoogle Scholar

  • Klippel, A., Winter, S. (2005, September). Structural salience of landmarks for route directions. In A. G. Cohn, D. M. Mark (Eds.), Spatial information theory: Proceedings of the International Conference COSIT 2005, Ellicottville, NY, USA (pp. 347–362). Berlin, Germany: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Loomis, J. M., Golledge, R. G., Klatzky, R. L. (1998). Navigation system for the blind: Auditory display modes and guidance. Presence, 7, 193–203. doi 10.1162/105474698565677 First citation in articleCrossrefGoogle Scholar

  • Loomis, J. M., Klatzky, R. L., Avraamides, M. N., Lippa, Y., Golledge, R. G. (2007). Functional equivalence of spatial images produced by perception and spatial language. In F. Mast, L. Jäncke (Eds.), Spatial processing in navigation, imagery, and perception (pp. 29–48). Berlin, Germany: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., Fry, P. A. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General, 122, 73–91. doi 10.1037//0096-3445.122.1.73 First citation in articleCrossrefGoogle Scholar

  • Loomis, J. M., Lippa, Y., Golledge, R. G., Klatzky, R. L. (2002). Spatial updating of locations specified by 3-D sound and spatial language. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 335–345. doi 10.1037//0278-7393.28.2.335 First citation in articleGoogle Scholar

  • Lynch, K. (1960). The image of the city. Cambridge, MA: MIT. First citation in articleGoogle Scholar

  • Meilinger, T., Knauff, M. (2008). Ask for directions or use a map: A field experiment on spatial orientation and wayfinding in an urban environment. Journal of Spatial Science, 53, 13–24. doi 10.1080/14498596.2008.9635147 First citation in articleCrossrefGoogle Scholar

  • Meilinger, T., Knauff, M., Bülthoff, H. H. (2008). Working memory in wayfinding: A dual task experiment in a virtual city. Cognitive Science, 32, 755–770. doi 10.1080/03640210802067004 First citation in articleCrossrefGoogle Scholar

  • Nothegger, C., Winter, S., Raubal, M. (2004). Selection of salient features for route directions. Spatial Cognition & Computation, 4, 113–136. doi 10.1207/s15427633scc0402_1 First citation in articleCrossrefGoogle Scholar

  • Pazzaglia, F., Taylor, H. A. (2007). Perspective, instruction, and cognitive style in spatial representation of a virtual environment. Spatial Cognition & Computation, 7, 349–364. doi 10.1080/13875860701663223 First citation in articleCrossrefGoogle Scholar

  • Presson, C. C., Montello, D. R. (1988). Points of reference in spatial cognition: Stalking the elusive landmark. British Journal of Developmental Psychology, 6, 378–381. doi 10.1111/j.2044-835X.1988.tb01113.x First citation in articleCrossrefGoogle Scholar

  • Röser, F., Hamburger, K., Knauff, M. (2011). The Giessen virtual environment laboratory: Human wayfinding and landmark salience. Cognitive Processing, 12, 209–214. doi 10.1007/s10339-011-0390-3 First citation in articleCrossrefGoogle Scholar

  • Röser, F., Hamburger, K., Krumnack, A., Knauff, M. (2012). The structural salience of landmarks: Results from an on-line study and a virtual environment experiment. Journal of Spatial Science, 57, 37–50. doi 10.1080/14498596.2012.686362 First citation in articleCrossrefGoogle Scholar

  • Röser, F., Krumnack, A., Hamburger, K., Knauff, M. (2012, April). A four factor model of landmark salience: A new approach. In N. Rußwinkel, U. Drewitz, H. van Rijn (Eds.), Proceedings of the 11th International Conference on Cognitive Modeling (ICCM) (pp. 82–87). Berlin, Germany: Universitätsverlag der TU Berlin. First citation in articleGoogle Scholar

  • Sorrows, M. E., Hirtle, S. C. (1999, August). The nature of landmarks for real and electronic spaces. In C. Freksa, D. M. Mark (Eds.), Spatial information theory: Cognitive and computational foundations of geographic information science. Proceedings of the International Conference COSIT ’99, Stade, Germany (pp. 37–50). Stade, Germany: Springer-Verlag. First citation in articleCrossrefGoogle Scholar

  • Simpson, B. D., Brungart, D. S., Gilkey, R. H., McKinley, R. L. (2005, April). Spatial audio displays for improving safety and enhancing situation awareness in general aviation environments. In New directions for improving audio effectiveness: Meeting proceedings RTO-MP-HFM-123, Paper 26 (pp. 26–1–26–16). Neuilly-sur-Seine, France: RTO. Available from www.rto.nato.int/abstracts.aps First citation in articleGoogle Scholar

  • Tranel, D., Damasio, H., Eichborn, G. R., Grabowski, T., Ponto, L. L. B., Hichwa, R. D. (2003). Neural correlates of naming animals from their characteristic sounds. Neuropsychologia, 41, 847–854. doi 10.1016/S0028-3932(02)00223-3 First citation in articleCrossrefGoogle Scholar

  • Walker, B. N., Lindsay, J. (2006). Navigation performance with a virtual auditory display: Effects of beacon sound, capture radius, and practice. Human Factors, 48, 265–278. doi 10.1518/ 001872006777724507 First citation in articleCrossrefGoogle Scholar