Skip to main content
Log in

Altered Neuronal–Glial Signaling in Glutamatergic Transmission as a Unifying Mechanism in Chronic Pain and Mental Fatigue

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent experimental results have demonstrated a glial activation during long-term pain that produces and releases cytokines, free oxygen radicals, nitric oxide, and other neuroactive substances in the spinal cord dorsal horns. Such activation might generate a vicious circle by increasing the neuronal excitability level due to a decreased astroglial glutamate uptake and thereby reinforce pain signals that travel up to the thalamus and further up into the parietal cortex for identification and interpretation. In this paper, we adapt new knowledge on neuronal-glial signaling in the CNS to develop tentative explanations at the cellular level for the maintenance of pain signals in the brain, for formation of “pain memory,” and even for the increased pain sensitivity that persons with chronic pain often experience in body regions other than those originally affected. We also suggest a hypothetical mechanism at the cellular level underlying the mental fatigue from which persons with chronic pain may suffer. This hypothesis relies on the impaired astroglial glutamate uptake capacity due to the production of neuroactive substances, altered conditions in the chronic pain state, and the anxiety and stress reactions that may occur secondary to the pain. Neuronal activity over time in the dysfunctional state of the astroglial network leads to an increase in extracellular glutamate levels in the vicinity of glutamate synapses. In turn, this increase leads over time to less precision in glutamate transmission. The increased extracellular glutamate levels lead to increased excitability and increased energy requirements. When cellular energy decreases the glutamate transmission decreases, and according to our hypothesis, this is one cause of mental fatigue. New strategies for treatment of chronic pain and the associated mental fatigue are formulated and should be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Watkins, L. R. and Maier, S. F. 2002. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 82:981–1011.

    Google Scholar 

  2. Nitu, A. N., Wallihan, R., Skljarevski, V., and Ramadan, N. M. 2003. Emerging trends in the pharmacotherapy of chronic pain. Expert Opin. Investig. Drugs 12:545–559.

    Google Scholar 

  3. Varney, M. A. and Gereau, R. W. 4th 2002. Metabotropic glutamate receptor involvement in models of acute and persistent pain: prospects for the development of novel analgesics. Curr. Drug Target CNS Neurol. Disord. 1:283–296.

    Google Scholar 

  4. Watkins, L. R., Milligan, E. D., and Maier, S. F. 2001. Spinal cord glia: new players in pain. Pain 93:201–205.

    Google Scholar 

  5. Rutkowski, M. D. and DeLeo, J. A. 2002. The role of cytokines in the initiation and maintenance of chronic pain. Drug News Perspect. 15:626–632.

    Google Scholar 

  6. DeLeo, J. A. and Colburn, R. W. 1999. Proinflammatory cytokines and glial cells: their role in neuropathic pain. Pages 159–182, in Watkins, L. (ed.), Cytokines and pain. Birkhauser, Basel.

    Google Scholar 

  7. Meller, S. T. Dykstra, C., Grzbycki, D., Murphy, S., and Gebhart, G. F. 1994. The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33:1471–1478.

    Google Scholar 

  8. Hatten, M. E. and Mason, C. A. 1990. Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 46:907–916.

    Google Scholar 

  9. Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. 2001. Control synapse number by glia. Science 291:657–661.

    Google Scholar 

  10. Walz, W. 1989. Role of glial cells in regulation of the brain ion microenvironment. Progr. Neurobiol. 33:309–333.

    Google Scholar 

  11. Hansson, E., Olsson, T., and Rönnbäck, L. (eds.). 1997. On astrocytes and glutamate neurotransmission. Landes Bioscience Company, Springer Verlag, Austin, TX, Heidelberg, Germany.

    Google Scholar 

  12. Araque, A., Parpura, V., Sanzgiri, R. P., and Haydon, P. G. 1999. Tripartite synapses: glia, the acknowledged partner. Trends Neurosci. 22:208–215.

    Google Scholar 

  13. Hansson, E. and Rönnbäck, L. 2004. Astrocytic receptors and second messenger systems. Hertz, L. (ed.), in Advances in Molecular and Cell Biology. 31: 475–501.

  14. Pasti, L., Volterra, A., Pozzan, T., and Carmignoto, G. 1997. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17:7817–7830.

    Google Scholar 

  15. Blomstrand, F., Khatibi, S., Muyderman, H., Hansson, E., Olsson, T., and Rönnbäck, L. 1999. 5-Hydroxytryptamine and glutamate modulate velocity and extent of intercellular calcium signalling in hippocampal astroglial cells in primary cultures. Neuroscience 88:1241–1253.

    Google Scholar 

  16. Sneyd, J., Charles, A. C., and Sanderson, M. J. 1994. A model for the propagation of intercellular calcium waves. Am. J. Physiol. 266:C293–C302.

    Google Scholar 

  17. Cotrina, M. L., Lin, J. H., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C. C., and Nedergaard, M. 1998. Connexins regulate calcium signaling by controlling ATP release. Proc. Natl. Acad. Sci. USA 95:15735–15740.

    Google Scholar 

  18. Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B. L., Pozzan, T., and Volterra, A. 1998. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391:281–285.

    Google Scholar 

  19. Muyderman, H., Ängehagen, M., Sandberg, M., Björklund, U., Olsson, T., Hansson, E., and Nilsson, M. 2001. α1-Adrenergic modulation of metabotropic glutamate receptor-induced calcium oscillations and glutamate release. J. Biol. Chem. 49:46504–46514.

    Google Scholar 

  20. Kreutzberg, G. W. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312–318.

    Google Scholar 

  21. Kaur, C., Hao, A. J., Wu, C. H., and Ling, E. A. 2001. Origin of microglia. Microscop. Res. Tech. 54:2–9.

    Google Scholar 

  22. Hansson, E. and Rönnbäck, L. 2003. Glial neuronal signaling in the central nervous system. FASEB J. 17:341–348.

    Google Scholar 

  23. Watkins, L. R., Martin, D., Ulrich, P., Tracey, K. J., and Maier, S. F. 1997. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. Pain 71:225–235.

    Google Scholar 

  24. Covey, W. C., Ignatowski, T. A., Renauld, A. E., Knight, P. R., Nader, N. D., and Spengler, R. N. 2002. Expression of neuron-associated tumor necrosis factor alpha in the brain is increased during persistent pain. Reg. Anesth. Pain Med. 27:357–366.

    Google Scholar 

  25. Fine, S. M., Angel, R. A., Perry, S. W., Epstein, L. G., Rothstein, J. D., Dewhurst, S., and Gelbard, H. A. 1996. Tumor necrosis factor alpha inhibits glutamate uptake by primary human astrocytes. Implications for pathogenesis of HIV-1 dementia. J. Biol. Chem. 271:15303–15306.

    Google Scholar 

  26. McNaught, K. S. and Jenner, P. 2000. Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. Biochem. Pharmacol. 60:979–988.

    Google Scholar 

  27. Watkins, L. R., Milligan, E. D., and Maier, S. F. 2001. Glial activation: a driving force for pathological pain. Trends Neurosci. 24:450–455.

    Google Scholar 

  28. Riedel, G. 1996. Function of metabotropic glutamate receptors in learning and memory. Trends Neurosci. 19:219–224.

    Google Scholar 

  29. Yudkoff, M., Nissim, I., Daikhin, Y., Lin, Z-P., Nelson, D., Pleasure, D., and Erecinska, M. 1993. Brain glutamate metabolism: neuronal-astroglial relationships. Dev. Neurosci. 15:343–350.

    Google Scholar 

  30. Hansson, E. and Rönnbäck, L. 1995. Astrocytes in glutamate neurotransmission. FASEB J. 9:343–350.

    Google Scholar 

  31. Haydon, P. G. 2001. Glia: listening and talking to the synapse. Nature Neurosci. Rev. 2:185–193.

    Google Scholar 

  32. Sims, K. D. and Robinson, M. B. 1999. Expression patterns and regulation of glutamate transporters in the developing and adult nervous system. Crit. Rev. Neurobiol. 13:169–197.

    Google Scholar 

  33. Barres, B. A. 1991. New roles for glia. J. Neurosci. 11:3685–3694.

    Google Scholar 

  34. Ozog, M. A., Siushansian, R., and Naus, C. C. 2002. Blocked gap junction coupling increases glutamate-induced neurotoxicity in neuron-astrocyte co-cultures. J. Neuropathol. Exp. 61:132–141.

    Google Scholar 

  35. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. 1996. Knockout of glutamate transporters reveals a major role of astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    Google Scholar 

  36. Erecinska, M., and Silver, I. A. 1990. Metabolism and role of glutamate in mammalian brain. Prog. Neurobiol. 35:245–296.

    Google Scholar 

  37. Hertz, L. 1979. Functional interactions between neurons and astrocytes. I. Turnover and metabolism of putative amino acid transmitters. Prog. Neurobiol. 13:277–323.

    Google Scholar 

  38. Schousboe, A. 1981. Transport and metabolism of glutamate and GABA in neurons and glial cells. Int. Rev. Neurobiol. 22:1–45.

    Google Scholar 

  39. Danbolt, N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65:1–105.

    Google Scholar 

  40. Chizh, B. A. 2002. Novel approaches to targeting glutamate receptors for the treatment of chronic pain: review article. Amino Acids 23:169–176.

    Google Scholar 

  41. Tzschentke, T. M. 2002. Glutamatergic mechanisms in different disease states: overview and therapeutical implications—an introduction. Amino Acids 23:147–152.

    Google Scholar 

  42. Anderson, J. M., Kaplan, M. S., and Felsenthal, G. 1990. Brain injury obscured by chronic pain: a preliminary report. Arch. Phys. Med. Rehabil. 71:703–708.

    Google Scholar 

  43. Åström, M., Adolfsson, R., Asplund, K., and Åström, T. 1992. Life before and after stroke. Cerebrovasc. Dis. 2:28–34.

    Google Scholar 

  44. Schalén, W., Hansson, L., Nordström, G., and Nordström, C-H. 1994. Psychosocial outcome 5-8 years after severe traumatic brain lesions and the impact of rehabilitation services. Brain Injury 8:49–64.

    Google Scholar 

  45. Colosimo, C., Millefiorini, E., Grasso, M. G., Vinci, F., Fiorelli, M., Koudriavtseva, T., Pozzilli, C. 1995. Fatigue in MS is associated with specific clinical features. Acta Neurol. Scand. 92:353–355.

    Google Scholar 

  46. Bohnen, N. L., Jolles, J., Twijnstra, A., Mellink, R., and Wijnen, G. 1995. Late neurobehavioral symptoms after mild head injury. Brain Injury 9:27–33.

    Google Scholar 

  47. McFarlane, A. C., Weber, D. L., and Clark, C. R. 1993. Abnormal stimulus processing in posttraumatic stress disorder. Biol. Psychiatry 34:311–320.

    Google Scholar 

  48. Lindqvist, G. and Malmgren, H. 1993. Organic mental disorders as hypothetical pathogenetic processes. Acta Psychiatr. Scand. (Suppl) 373:5–17.

    Google Scholar 

  49. Banati, R. B. 2002. Brain plasticity and microglia: is transsynaptic glial activation in the thalamus after limb denervation linked to cortical plasticity and central sensitisation? J. Physiol. (Paris) 96:289–299.

    Google Scholar 

  50. Tsigos, C. and Chrousos, G. P. 2002. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 53:865–871.

    Google Scholar 

  51. Virgin, C. E., Jr., Ha, T. P., Packan, D. R., Tombaugh, G. C., Yang, S. H., Horner, H. C., and Sapolsky, R. M. 1991. Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J. Neurochem. 57:1422–1428.

    Google Scholar 

  52. Barbour, B., Szatkowski, M., Ingledew, N., and Attwell, D. 1989. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342:918–919.

    Google Scholar 

  53. Leonova, J., Thorlin, T., Åberg, N. D., Eriksson, P. S., Rönnbäck, L., and Hansson, E. 2001. Endothelin-1 decreases glutamate uptake in primary cultured rat astrocytes. Am. J. Physiol. Cell. Physiol. 281:C1495–C1503.

    Google Scholar 

  54. Swanson, R. A., Farrell, K., and Simon, R. P. 1995. Acidosis causes failure of astrocyte glutamate uptake during hypoxia. J. Cereb. Blood Flow Metab. 15:417–424.

    Google Scholar 

  55. Ye, Z. C. and Sontheimer, H. 1996. Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 7:2181–2185.

    Google Scholar 

  56. Åberg, N. D., Blomstrand, F., Åberg, M. A. I., Björklund, U., Carlsson, B., Carlsson-Skwirut, C., Bang, P., Rönnbäck, L., and Eriksson, P. S. 2003. Insulin-like growth factor I increases astrocyte intercellular gap junctional communication and connexin 43 expression in vitro. J. Neurosci. Res. 74:12–22.

    Google Scholar 

  57. Dinkel, K., MacPherson, A., and Sapolsky, R. M. 2003. Novel glucocorticoid effects on acute inflammation in the CNS. J. Neurochem. 84:705–716.

    Google Scholar 

  58. John, G. R., Scemes, E., Suadicani, S. O., Liu, J. S. H., Charles, P. C., Lee, S. C., Spray, D. C., and Brosnan, C. F. 1999. IL-1β differentially regulates calcium wave propagation between primary human fetal astrocytes via pathways involving P2 receptors and gap junction channels. Proc. Natl. Acad. Sci. USA 96:11613–11618.

    Google Scholar 

  59. Sweitzer, S. M., Schubert, P., and DeLeo, J. A. 2001. Propentofylline, a glial modulating agent exhibits anti-allodynic properties in a rat model of neuropathic pain. J. Pharmacol. Exp. Ther. 297:1210–1217.

    Google Scholar 

  60. Hirsch, E. C., Breidert, T., Rousselet, E., Hunot, S., Hartmann, A., and Michel, P. P. 2003. The role of glial reaction and inflammation in Parkinson's disease. Ann. NY Acad. Sci. 991:214–228.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, E., Rönnbäck, L. Altered Neuronal–Glial Signaling in Glutamatergic Transmission as a Unifying Mechanism in Chronic Pain and Mental Fatigue. Neurochem Res 29, 989–996 (2004). https://doi.org/10.1023/B:NERE.0000021243.86287.43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000021243.86287.43

Navigation