Skip to main content
Log in

Axonal Signals and Oligodendrocyte Differentiation

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Axons produce signals that regulate oligodendrocyte proliferation, survival, terminal differentiation, and myelinogenesis. We review here recent in vitro and in vivo experimental approaches that aim to characterize axonal signals to oligodendroglia and to identify molecular mediators that regulate differentiation of oligodendendrocytes. We propose that the promoters of myelin genes, whose activation during terminal differentiation is modulated by axonal signals, can provide a means to identify molecular mediators of axo-oligodendroglial signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Baumann, N. and Pham-Dinh, D. 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol. Rev. 81:871–927.

    Google Scholar 

  2. Grinspan, J. 2002. Cells and signaling in oligodendrocyte development. J. Neuropathol. Exp. Neurol. 61:297–306.

    Google Scholar 

  3. Barres, B. A., and Raff, M. C. 1999. Axonal control of oligodendrocyte development. J. Cell Biol. 147:1123–1128.

    Google Scholar 

  4. Fields, R. D. and Stevens-Graham, B. 2002. New insights into neuron-glia communication. Science 298:556–562.

    Google Scholar 

  5. Zeller, N. K., Behar, T. N., Dubois-Dalcq, M. E., and Lazzarini, R. A. 1985. The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences. J. Neurosci. 5:2955–2962.

    Google Scholar 

  6. Dubois-Dalcq, M., Behar, T., Hudson, L., and Lazzarini, R. A. 1986. Emergence of three myelin proteins in oligodendrocytes cultured without neurons. J. Cell Biol. 102:384–392.

    Google Scholar 

  7. Mirsky, R., Winter, J., Abney, E. R., Pruss, R. M., Gavrilovic, J., and Raff, M. C. 1980. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J. Cell Biol. 84:483–494.

    Google Scholar 

  8. Sarlieve, L. L., Rao, G. S., Campbell, G. L., and Pieringer, R. A. 1980. Investigations on myelination in vitro: biochemical and morphological changes in cultures of dissociated brain cells from embryonic mice. Brain Res. 189:79–90.

    Google Scholar 

  9. Williams, B. P., Abney, E. R., and Raff, M. C. 1985. Macroglial cell development in embryonic rat brain: studies using monoclonal antibodies, fluorescence activated cell sorting, and cell culture. Dev. Biol. 112:126–134.

    Google Scholar 

  10. Warf, B. C., Fok-Seang, J., and Miller, R. H. 1991. Evidence for the ventral origin of oligodendrocyte precursors in the rat spinal cord. J. Neurosci. 11:2477–2488.

    Google Scholar 

  11. Raff, M. C., Abney, E. R., and Fok, S. J. 1985. Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation. Cell 42:61–69.

    Google Scholar 

  12. Temple, S. and Raff, M. C. 1986. Clonal analysis of oligodendrocyte development in culture: evidence for a developmental clock that counts cell divisions. Cell 44:773–779.

    Google Scholar 

  13. Wood, P. M. and Bunge, R. P. 1986. Evidence that axons are mitogenic for oligodendrocytes isolated from adult animals. Nature 320:756–758.

    Google Scholar 

  14. Macklin, W. B., Weill, C. L., and Deininger, P. L. 1986. Expression of myelin proteolipid and basic protein mRNAs in cultured cells. J. Neurosci. Res. 16:203–217.

    Google Scholar 

  15. Kidd, G. J., Hauer, P. E., and Trapp, B. D. 1990. Axons modulate myelin protein messenger RNA levels during central nervous system myelination in vivo. J. Neurosci. 26:409–418.

    Google Scholar 

  16. McPhilemy, K., Mitchell, L. S., Griffiths, I. R., Morrison, S., Deary, A. W., Sommer, I., and Kennedy, P. G. 1990. Effect of optic nerve transection upon myelin protein gene expression by oligodendrocytes: evidence for axonal influences on gene expression. J. Neurocytol. 19:494–503.

    Google Scholar 

  17. Scherer, S. S., Vogelbacker, H. H., and Kamholz, J. 1992. Axons modulate the expression of proteolipid protein in the CNS. J. Neurosci. Res. 32:138–148.

    Google Scholar 

  18. Gyllensten, L. and Malmfors, T. 1963. Myelinization of the optic nerve and its dependence on visual function: a quantitative investigation in mice. J. Embryol. Exp. Morphol. 11:255–266.

    Google Scholar 

  19. Herbin, M., Rio, J. P., Reperant, J., Cooper, H. M., Nevo, E., and Lemire, M. 1995. Ultrastructural study of the optic nerve in blind mole-rats (Spalacidae, Spalax). Vis. Neurosci. 12:253–261.

    Google Scholar 

  20. Omlin, F. X. 1997. Optic disc and optic nerve of the blind cape mole-rat (Georychus capensis): a proposed model for naturally occurring reactive gliosis. Brain Res. Bull. 44:627–632.

    Google Scholar 

  21. Tauber, H., Waehneldt, T. V., and Neuhoff, V. 1980. Myelination in rabbit optic nerves is accelerated by artificial eye opening. Neurosci. Lett. 16:235–238.

    Google Scholar 

  22. Chen, S. J. and De Vries, G. H. 1989. Mitogenic effect of axolemma-enriched fraction on cultured oligodendrocytes. J. Neurochem. 52:325–327.

    Google Scholar 

  23. Duncan, D. J. 1934. A relation between axon diameter and myelination as determined by measurements of myelinated spinal rat fibers. J. Comp. Neurol. 60:437–472.

    Google Scholar 

  24. Notterpek, L. M. and Rome, L. H. 1994. Functional evidence for the role of axolemma in CNS myelination. Neuron 13:473–485.

    Google Scholar 

  25. Lubetzki, C., Demerens, C., Anglade, P., Villarroya, H., Frankfurter, A., Lee, V. M., and Zalc, B. 1993. Even in culture, oligodendrocytes myelinate solely axons. Proc. Natl. Acad. Sci. U. S. A. 90:6820–6824.

    Google Scholar 

  26. Thomas, J. L., Spassky, N., Perez Villegas, E. M., Olivier, C., Cobos, I., Goujet-Zalc, C., Martinez, S., and Zalc, B. 2000. Spatiotemporal development of oligodendrocytes in the embryonic brain. J. Neurosci. Res. 59:471–476.

    Google Scholar 

  27. Richardson, W. R. 2001. Oligodendrocyte development. Pages 21–54, in Jessen, K. R., and Richardson, W. R., (eds.), Glial cell development: basic principles and clinical relevance. Oxford University Press, Oxford.

    Google Scholar 

  28. Grinspan, J., Wrabetz, L., and Kamholz, J. 1993. Oligodendrocyte maturation and myelin gene expression in PDGF-treated cultures from rat cerebral white matter. J. Neurocytol. 22:322–333.

    Google Scholar 

  29. Barres, B. A., Jacobson, M. D., Schmid, R., Sendtner, M., and Raff, M. C. 1993. Does oligodendrocyte survival depend on axons? Curr. Biol. 3:489–497.

    Google Scholar 

  30. Burne, J. F., Staple, J. K., and Raff, M. C. 1996. Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons. J. Neurosci. 16:2064–2073.

    Google Scholar 

  31. Ludwin, S. K., and Bisby, M. A. 1992. Delayed wallerian degeneration in the central nervous system of Ola mice: an ultrastructural study. J. Neurol. Sci. 109:140–147.

    Google Scholar 

  32. Barres, B. A. and Raff, M. C. 1993. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–260.

    Google Scholar 

  33. Demerens, C., Stankoff, B., Logak, M., Anglade, P., Allinquant, B., Couraud, F., Zalc, B., and Lubetzki, C. 1996. Induction of myelination in the central nervous system by electrical activity. Proc. Natl. Acad. Sci. U. S. A. 93:9887–9892.

    Google Scholar 

  34. Barres, B. A., Hart, I. K., Coles, H. S., Burne, J. F., Voyvodic, J. T., Richardson, W. D., and Raff, M. C. 1992. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46.

    Google Scholar 

  35. Colello, R. J., Devey, L. R., Imperato, E., and Pott, U. 1995. The chronology of oligodendrocyte differentiation in the rat optic nerve: evidence for a signaling step initiating myelination in the CNS. J. Neurosci. 15:7665–7672.

    Google Scholar 

  36. Knutson, P., Ghiani, C. A., Zhou, J. M., Gallo, V., and McBain, C. J. 1997. K<sup>+</sup> channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J. Neurosci. 17:2669–2682.

    Google Scholar 

  37. Neusch, C., Rozengurt, N., Jacobs, R. E., Lester, H. A., and Kofuji, P. 2001. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J. Neurosci. 21:5429–5438.

    Google Scholar 

  38. Stevens, B. and Fields, R. D. 2000. Response of Schwann cells to action potentials in development. Science 287:2267–2271.

    Google Scholar 

  39. Stevens, B., Porta, S., Haak, L. L., Gallo, V., and Fields, R. D. 2002. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868.

    Google Scholar 

  40. Erickson, S. L., O'Shea, K. S., Ghaboosi, N., Loverro, L., Frantz, G., Bauer, M., Lu, L. H., and Moore, M. W. 1997. ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124:4999–5011.

    Google Scholar 

  41. Sandrock, A. W., Jr., Dryer, S. E., Rosen, K. M., Gozani, S. N., Kramer, R., Theill, L. E., and Fischbach, G. D. 1997. Maintenance of acetylcholine receptor number by neuregulins at the neuromuscular junction in vivo. Science 276:599–603.

    Google Scholar 

  42. Britsch, S., Li, L., Kirchhoff, S., Theuring, F., Brinkmann, V., Birchmeier, C., and Riethmacher, D. 1998. The ErbB2 and ErbB3 receptors and their ligand, neuregulin-1, are essential for development of the sympathetic nervous system. Genes Dev. 12:1825–1836.

    Google Scholar 

  43. Carraway, K. L., 3rd, and Burden, S. J. 1995. Neuregulins and their receptors. Curr. Opin. Neurobiol. 5:606–612.

    Google Scholar 

  44. Riese, D. J., 2nd, and Stern, D. F. 1998. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 20:41–48.

    Google Scholar 

  45. Vartanian, T., Fischbach, G., and Miller, R. 1999. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc. Natl. Acad. Sci. USA 96:731–735.

    Google Scholar 

  46. Canoll, P. D., Musacchio, J. M., Hardy, R., Reynolds, R., Marchionni, M. A., and Salzer, J. L. 1996. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17:229–243.

    Google Scholar 

  47. Fernandez, P. A., Tang, D. G., Cheng, L., Prochiantz, A., Mudge, A. W., and Raff, M. C. 2000. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28:81–90.

    Google Scholar 

  48. Canoll, P. D., Kraemer, R., Teng, K. K., Marchionni, M. A., and Salzer, J. L. 1999. GGF/neuregulin induces a phenotypic reversion of oligodendrocytes. Mol. Cell. Neurosci. 13:79–94.

    Google Scholar 

  49. Vartanian, T., Corfas, G., Li, Y., Fischbach, G. D., and Stefansson, K. 1994. A role for the acetylcholine receptor-inducing protein ARIA in oligodendrocyte development. Proc. Natl. Acad. Sci. USA 91:11626–11630.

    Google Scholar 

  50. Park, S. K., Miller, R., Krane, I., and Vartanian, T. 2001. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J. Cell Biol. 154:1245–1258.

    Google Scholar 

  51. Blaschuk, K. L., Frost, E. E., and ffrench-Constant, C. 2000. The regulation of proliferation and differentiation in oligodendrocyte progenitor cells by alphaV integrins. Development 127:1961–1969.

    Google Scholar 

  52. Colognato, H., Baron, W., Avellana-Adalid, V., Relvas, J. B., Baron-Van Evercooren, A., Georges-Labouesse, E., and ffrench-Constant, C. 2002. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 4:833–841.

    Google Scholar 

  53. Frost, E. E., Buttery, P. C., Milner, R., and ffrench-Constant, C. 1999. Integrins mediate a neuronal survival signal for oligodendrocytes. Curr. Biol. 9:1251–1254.

    Google Scholar 

  54. Wang, S. and Barres, B. A. 2000. Up a notch: instructing gliogenesis. Neuron 27:197–200.

    Google Scholar 

  55. Wang, S., Sdrulla, A. D., diSibio, G., Bush, G., Nofziger, D., Hicks, C., Weinmaster, G., and Barres, B. A. 1998. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75.

    Google Scholar 

  56. Givogri, M. I., Costa, R. M., Schonmann, V., Silva, A. J., Campagnoni, A. T., and Bongarzone, E. R. 2002. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 67:309–320.

    Google Scholar 

  57. LeBlanc, A. C., Poduslo, J. F., and Mezei, C. 1987. Gene expression in the presence or absence of myelin assembly. Brain Res. 388:57–67.

    Google Scholar 

  58. Trapp, B. D., Hauer, P., and Lemke, G. 1988. Axonal regulation of myelin protein mRNA levels in actively myelinating Schwann cells. J. Neurosci. 8:3515–3521.

    Google Scholar 

  59. Molineaux, S. M., Engh, H., de Ferra, F., Hudson, L., and Lazzarini, R. A. 1986. Recombination within the myelin basic protein gene created the dysmyelinating shiverer mouse mutation. Proc. Natl. Acad. Sci. USA 83:7542–7546.

    Google Scholar 

  60. Skoff, R. P., Toland, D., and Nast, E. 1980. Pattern of myelination and distribution of neuroglial cells along the developing optic system of the rat and rabbit. J. Comp. Neurol. 191:237–253.

    Google Scholar 

  61. Butt, A. M., Ibrahim, M., and Berry, M. 1997. The relationship between developing oligodendrocyte units and maturing axons during myelinogenesis in the anterior medullary velum of neonatal rats. J. Neurocytol. 26:327–338.

    Google Scholar 

  62. Back, S. A., Luo, N. L., Borenstein, N. S., Volpe, J. J., and Kinney, H. C. 2002. Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J. Neuropathol. Exp. Neurol. 61:197–211.

    Google Scholar 

  63. Foran, D. R., and Peterson, A. C. 1992. Myelin acquisition in the central nervous system of the mouse revealed by an MBP-Lac Z transgene. J. Neurosci. 12:4890–4897.

    Google Scholar 

  64. Gow, A., Friedrich, V., Jr., and Lazzarini, R. A. 1992. Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression. J. Cell Biol. 119:605–616.

    Google Scholar 

  65. Goujet-Zalc, C., Babinet, C., Monge, M., Timsit, S., Cabon, F., Gansmuller, A., Miura, M., Sanchez, M., Pournin, S., Mikoshiba, K., and Zalc, B. 1993. The proximal region of the MBP gene promoter is sufficient to induce oligodendroglial-specific expression in transgenic mice. Eur. J. Neurosci. 5:624–632.

    Google Scholar 

  66. Wrabetz, L., Taveggia, C., Feltri, M., Quattrini, A., Awatramani, R., Scherer, S., Messing, A., and Kamholz, J. 1998. A minimal human MBP promoter-lacZ transgene is appropriately regulated in developing brain and after optic enucleation, but not in shiverer mutant mice. J. Neurobiol. 34:10–26.

    Google Scholar 

  67. Lubetzki, C., Demerens, C., Goujet-Zalc, C., Timsit, S., Monge, M., Peyron, F., Sanchez, M., and Zalc, B. 1993. Axonal contact induces the final maturation step of oligodendrocytes leading to myelination. In Matthieu, J.-M., Rieber, F., and Zalc, B. (eds.), Proceedings of Int Soc Neurochem Satellite “Emerging Concepts in Myelin Biology” 27 (Abstract), Inserm, Paris.

    Google Scholar 

  68. Lorenzetti, I., Quattrini, A., Pizzagalli, A., Taveggia, C., Feltri, M., and Wrabetz, L. 1999. A distinct axonal signal regulates MBP transcription during CNS myelinogenesis. Soc Neurosci Absts 25:10.

    Google Scholar 

  69. Hudson, L. D. 2001. Control of gene expression by oligodendrocytes. Pages 209–221, in Jessen, K. R. and Richardson, W. R. (eds.), Glial cell development: basic principles and clinical relevance. Oxford University Press, Oxford.

    Google Scholar 

  70. Stolt, C. C., Rehberg, S., Ader, M., Lommes, P., Riethmacher, D., Schachner, M., Bartsch, U., and Wegner, M. 2002. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16:165–170.

    Google Scholar 

  71. Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K., and Uhler, M. D. (eds.) 1998. Basic neurochemistry: molecular, cellular and medical aspects, 6th ed., Lippincott-Raven, Philadelphia.

    Google Scholar 

  72. Baron, W., Decker, L., Colognato, H., and ffrench-Constant, C. 2003. Regulation of integrin growth factor interactions in oligodendrocytes by lipid raft microdomains. Curr. Biol. 13:151–155.

    Google Scholar 

  73. Watkins, T. A. and Barres, B. A. 2002. Integrins as developmental switches. Nat. Cell Biol. 4:E253–255.

    Google Scholar 

  74. Gallo, V., Zhou, J. M., McBain, C. J., Wright, P., Knutson, P. L., and Armstrong, R. C. 1996. Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J. Neurosci. 16:2659–2670.

    Google Scholar 

  75. Yuan, X., Eisen, A. M., McBain, C. J., and Gallo, V. 1998. A role for glutamate and its receptors in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125:2901–2914.

    Google Scholar 

  76. Itoh, T., Beesley, J., Itoh, A., Cohen, A. S., Kavanaugh, B., Coulter, D. A., Grinspan, J. B., and Pleasure, D. 2002. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J. Neurochem. 81:390–402.

    Google Scholar 

  77. Rosenberg, P. A., Dai, W., Gan, X. D., Ali, S., Fu, J., Back, S. A., Sanchez, R. M., Segal, M. M., Follett, P. L., Jensen, F. E., and Volpe, J. J. 2003. Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J. Neurosci. Res. 71:237–245.

    Google Scholar 

  78. Charles, P., Hernandez, M. P., Stankoff, B., Aigrot, M. S., Colin, C., Rougon, G., Zalc, B., and Lubetzki, C. 2000. Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc. Natl. Acad. Sci. USA 97:7585–7590.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Wrabetz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzali, M., Wrabetz, L. Axonal Signals and Oligodendrocyte Differentiation. Neurochem Res 29, 979–988 (2004). https://doi.org/10.1023/B:NERE.0000021242.12455.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000021242.12455.75

Navigation