Skip to main content
Log in

Granule size and composition of bioactive glasses affect osteoconduction in rabbit

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive glass granules of three different compositions, regarding particularly Si- and Al- content (S53P4, S59.7P2.5, S52P3) and of two different granule sizes (200–250 μm and 630–800 μm) were implanted for 4 and 8 weeks in the distal part of rabbit femur. The effect of glass composition and granule size on bone formation was studied. The results were evaluated using histology, computerized histomorphometry, scanning electron microscopy and energy dispersive X-ray analysis, and used for mathematical description of bone formation. The results showed that both the composition of the glass and the granule size of the granules, have influence on bone growth from the surrounding tissue. Glass S53P4, which from previous observations is known to be an effective bioactive glass and widely used in the Biomaterial Project of Turku, Finland, showed bone bonding and increasing bone growth between the granules. Glass S59.7P2.5 which due to its high Si-content should be inert, showed bone bonding. At 4 weeks the bone growth was significantly more abundant in bone defects filled with large granules (630–800 μm) than in defects filled with small granules (200–250 μm). Glass S52P3 with an alumina content of 3 wt %, showed good bone conduction, possibly even bone bonding for granules of 630-800 μm size. Granules of 200–250 μm with a high alumina content at the surface of the reaction layer, showed hardly any bone contact at all. This data, therefore, gives new information concerning bone bonding and osteoconduction of bioactive glasses with a high silica or alumina content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. L. Hench and H. A. Pashall, J. Biomed. Mat. Res. 4 (1973) 25.

    Google Scholar 

  2. L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  3. A. M. Gatti, T. Yamamuro, L. L. Hench and O. H. Andersson, Cells and Materials 3 (1993) 283.

    Google Scholar 

  4. O. H. Andersson and I. Kangasniemi, J. Biomed. Mat. Res. 25 (1991) 1019.

    Google Scholar 

  5. M. Jarcho, Clin. Orthop. Rel. Res. 157 (1981) 259.

    Google Scholar 

  6. M. Neo, T. Nakamura, C. Ohtsuki, T. Kokubo and T. Yamamuro, J. Biomed. Mat. Res. 27 (1993) 999.

    Google Scholar 

  7. L. L. Hench, Ann. NY Ac. Sci. 523 (1988) 54.

    Google Scholar 

  8. A. M. Gatti, G. Valdre and O. H. Andersson, Biomaterials 15 (1994) 208.

    Google Scholar 

  9. O. H. Andersson, K. H. Karlsson, K. Kangasniemi and A. Yli-Urpo, Glastech. Ber. 61 (1988) 300.

    Google Scholar 

  10. J. Ahlback, Experimental design. Lecture notes in Swedish, \0Abo Akademi University (1995).

  11. D. M. Himmelblau. Process analysis by statistical methods (New York, Whiley 8 1970) p. 1.

    Google Scholar 

  12. K. Donath, EXAKT-Kulzer-Publication, Norstedt (1990).

  13. N. Lindfors and A. J. Aho. Eur. Spine J. 9 (2000) 30.

    Google Scholar 

  14. T. Turunen, J. Peltola, R.-P. Happonen and A. Yli-Urpo. J. Mater. Sci.: Mat. Med. 6 (1995) 639.

    Google Scholar 

  15. H. Oonishi, S. Kushitani, H. Iwaki, K. Saka, H. Ono, A. Tamura, T. Sugihara, L. L. Hench, J. Wilson and E. Tsuji, Comparative bone formation in several kinds of bioceramic granules. Bioceramics Vol. 8, edited by J. Wilson, L. L. Hench and D. Greenspan (Elsevier Science Ltd., Oxford, 1995) p. 137.

    Google Scholar 

  16. S. A. Bergman and L. J. Litkowski, Bone in-filling of non-healing calvarian defects using particulate Bioglass and autogenous bone. Bioceramics Vol 8, edited by J. Wilson, L. L. Hench and D. Greenspan (Elsevier Science Ltd., Oxford, 1995) p. 17.

    Google Scholar 

  17. A. M. Gatti, O. H. Andersson, G. Valdre, L. Chiarini, D. Tanza, S. Bulgarelli and E. Monari, Mat. Clin. Appl. (1995) 409.

  18. A. M. Gatti and D. Zaffe, Biomaterials 10 (1990) 245.

    Google Scholar 

  19. A. M. Gatti and D. Zaffe, ibid. 12 (1991) 497.

    Google Scholar 

  20. M. Peltola, J. Suonp, K. Aitasalo, H. Manen, O. Andersson, A. Yli-Urpo and P. Laippala, Acta Otolar Suppl. 53 (2000) 167.

    Google Scholar 

  21. O. H. Andersson, K. P. Yrjas and K. H. Karlsson, Reactions in and at the surface of bioactive glasses in aqueous solutions. Bioceramics Vol 4, edited by W. Bonfield, G. W. Hastings and K. E. Tanner (Butterworth-Heinemann Ltd, 1991) p. 127.

  22. O. H. Andersson, L. Guizhi, K. H. Karlsson, L. Niemi, J. Miettinen and J. Juhanoja, J. Mater. Sci.: Mater. in Med. 1 (1990) 219.

    Google Scholar 

  23. U. Gross and V. Strunz, J. Biomed. Mater. Res. 19 (1985) 251.

    Google Scholar 

  24. O. Andersson, The bioactivity of silicate glass. Doctoral Thesis, Department of Chemical Engineering, \0Abo Akademi University, Turku, Finland (1990).

    Google Scholar 

  25. O. H. Andersson, A. J. Aho, K. H. Karlsson and A. Yli-Urpo. Bioceramics 6 (1993) 289.

    Google Scholar 

  26. O. H. Andersson, G. Liu, K. H. Karlsson, L. Niemi, J. Miettinen and J. Juhanoja, J. Mater. Sci.: Mater. in Med. 1 (1990a) 219.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindfors, N.C., Aho, A.J. Granule size and composition of bioactive glasses affect osteoconduction in rabbit. Journal of Materials Science: Materials in Medicine 14, 365–372 (2003). https://doi.org/10.1023/A:1022988117526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022988117526

Keywords

Navigation