Skip to main content
Log in

Determinants for Lentiviral Infection of Non-Dividing Cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Lentiviruses share the common characteristic of infecting non-dividing target cells, distinguishing them from the oncogenic retroviruses which only productively infect dividing cells. The search for determinants for infection of non-dividing cells has produced a number of candidates. From HIV-1, the viral proteins matrix, integrase and Vpr have all been implicated. A structural determinant, the central DNA flap, has also been implicated. The supporting evidence for each of these proposed determinants will be examined and compared to how other viruses, non-retroviruses, transport their genomes to the nucleus. With currently available data, integrase and the central DNA flap appear to be the key players, and yet the mechanism for infection of non-dividing cells remains undefined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lewis PF, Emerman M. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68:510-516.

    Google Scholar 

  2. Roe T, Reynolds TC, Yu G et al. Integration of murine leukemia virus DNA depends on mitosis. EMBO J 1993; 12:2099-2108.

    Google Scholar 

  3. Joag SV, Stephens EB, Narayan O. Lentiviruses. 3rd ed. Vol. 2. Philadelphia: Lippincott-Raven, 1996.

    Google Scholar 

  4. Zhang Z, Schuler T, Zupancic M et al. Sexual transmision and propagation of SIV and HIV inresting and activated CD4+ T cells. Science 1999; 286:1353-1357.

    Google Scholar 

  5. Korin YD. Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 1999; 73:6526-6532.

    Google Scholar 

  6. Talcott B, Moore MS. Getting across the nuclear pore complex. Trends Cell Biol 1999; 9:312-318.

    Google Scholar 

  7. Mataj IW, Englmeier L. Nucleocytoplsamic transport: The soluble phase. Ann Rev Biochem 1998; 67:265-306.

    Google Scholar 

  8. Nakielny S, Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell 1999; 99:677-690.

    Google Scholar 

  9. Adam SA, Gerace L. Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import. Cell 1991; 66:837-847.

    Google Scholar 

  10. Cullen BR. Nuclear RNA export pathways. Mol Cell Biol 2000; 20:4181-4187.

    Google Scholar 

  11. Wen W, Meinkoth JL, Tsien RY et al. Identificaion of a signal for rapid export of proteins from the nucleus. Cell 1995; 82:463-473.

    Google Scholar 

  12. Fukuda M, Asano S, Nakamura T et al. CRM1 is repsonsible for intracellular transport mediated by the nuclear export signal. Nature 1997; 390:308-311.

    Google Scholar 

  13. Michael WM, Choi M, Dreyfuss G. A nuclear export signal in hnRNP A1: A signal-mediated, temperature-dependent nuclear protein export pathway. Cell 1995; 83:415-422.

    Google Scholar 

  14. Michael WM. Nucleocytoplasmic shuttling signals: Two for the price of one. Trends Cell Biol 2000; 10:46-50.

    Google Scholar 

  15. Cole CN, Hammell CM. Nucleocytoplasmic transport: driving and directing transport. Curr Biol 1998; 8:R368-372.

    Google Scholar 

  16. Moore MS, Blobel G. The GTP-binding protein Ran/TC4 is required for protein import in to the nucleus. Nature 1993; 365:661-663.

    Google Scholar 

  17. Görlich D, Dabrowski M, Bischoff FR et al. A novel class of RanGTP binding proteins. J Cell Biol 1997; 138:65-80.

    Google Scholar 

  18. Ohno M, Fornerod M, Mattaj IW. Nucleocytoplasmic transport: the last 200 nanometers. Cell 1998; 92:327-336.

    Google Scholar 

  19. Izaurralde E, Kann M, Pante N et al. Viruses, mircoorganisms and scientists meet the nuclear pore. EMBO J 1999; 18:289-296.

    Google Scholar 

  20. Luby-Phelps K. Ctyoarchitechture and physical properits of cytoplasm: volume, visocity, diffucion, intracellullar surface area. Int Rev Cytol 2000; 192:198-221.

    Google Scholar 

  21. Sodeik B. Mechanisms of viral transport in the cytoplasm. Trends Microbio 2000; 8:465-472.

    Google Scholar 

  22. Whittaker GR, Helenius A. Nuclear import and export of viruses and virus genomes. Virology 1998; 246:1-23.

    Google Scholar 

  23. Greber UF, Kasamatsu H. Nuclear targeting of SV40 and adenovirus. Trends Cell Biol 1996; 6:189-195.

    Google Scholar 

  24. Greber UF, Willetts M, Webster P et al. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 1993; 75:477-486.

    Google Scholar 

  25. Soumalainen M, Nakano MY, Keller S et al. Microtubule-dependent plus-and minus end-directed motilities are competing for nuclear targeting of adenovirus. J Cell Biol 1999; 144:657-672.

    Google Scholar 

  26. Greber UF, Soumaliainen M, Stidwill RP et al. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J 1997; 16:5998-6007.

    Google Scholar 

  27. Sodeik B, Ebersold MW, Helenius A. Microtubule-mediated transport of incoming herpes implex virus 1 capsids to the nucleus. J Cell Biol 1997; 136:1007-1021.

    Google Scholar 

  28. O'Neill RE, Jaskunas R, Blobel G et al. Nuclear import of influenza virus RNA can be mediated by viralnucleoproteina nd transport factors requred for protein import. J Biol Chem 1995; 270:22701-22704.

    Google Scholar 

  29. Whittaker G, Bui M, Helenius A. The role of nuclear import and export in influenza virus infection. Trends Cell Biol 1996; 6:67-71.

    Google Scholar 

  30. Miller MD, Farnet CM, Bushman FD. Human immunodeficiency virus type 1 preintegration complexes: Studies of organization and composition. J Virol 1997; 71:5382-5390.

    Google Scholar 

  31. Farnet CM, Haseltine WA. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 1991; 65:1910-1915.

    Google Scholar 

  32. Farnet CM, Bushman FD. HIV-1 cDNA integration: requirement of HMGI(Y) protein for function of preintegration complexes in vitro. Cell 1997; 88:483-492.

    Google Scholar 

  33. Li L, Farnet CM, Anderson WF et al. Modulation of activity of Moloney Murine Leukemia virus preintegration complexes by host factors in vitro. 1998; 72:2125-2131.

    Google Scholar 

  34. Chen H, Engelman A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc Natl Acad Sci USA 1998; 95:15270-15274.

    Google Scholar 

  35. Hindmarsh P, Ridky T, Reeves R et al. HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virs concerted DNA integration in vitro. J Virol 1999; 73:2994-3003.

    Google Scholar 

  36. Kimpton J, Emerman M. Detection of replication-competent and pseudotyped human imunodeficiency virus with a sensitive cell line on the basis of activation of an integrated betagalatosidase gene. J Virol 1992; 66:2232-2239.

    Google Scholar 

  37. Cecilia D, KewalRamani VN, O'Leary J et al. Neutralization profiles of primary human immunodeficiency virus type 1 isolates in the context of coreceptor usage. J Virol 1998; 72:6988-6996.

    Google Scholar 

  38. Brown PO, Bowerman B, Varmus HE et al. Correct integration of retroviral DNA in vitro. Cell 1987; 49:349-365.

    Google Scholar 

  39. Courcoul M, Patience C, Rey F et al. Peripheral blood mononuclear cells produce normal amounts of defective Vif-human immunodeficiency virus type 1 particles which are restricted for the preretrotranscription steps. J Virol 1995; 69:2068-2074.

    Google Scholar 

  40. Kalderon D, Roberts BL, Richardson WD et al. A short amino acid sequence able to specify nuclear localization. Cell 1984; 39:499-509.

    Google Scholar 

  41. Bukrinsky MI, Haggerty S, Dempsey MP et al. A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells. Nature 1993; 365:666-669.

    Google Scholar 

  42. von Schwedler U, Kornbluth RS, Trono D. The nuclear localization signal of matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes. Proc Nat Acad Sci USA 1994; 91:6992-6996.

    Google Scholar 

  43. Heinzinger NK, Bukrinsky MI, Haggerty SA et al. The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells. Proc Natl Acad Sci 1994; 91:7311-7315.

    Google Scholar 

  44. Gallay P, Swingler S, Allen C et al. HIV-1 infection of nondividing cells: C-terminal tyrosine phosophorylation of the viral matrix protein is a key regulator. Cell 1995; 80:379-388.

    Google Scholar 

  45. Gallay P, Hope TJ, Chin D et al. HIV-1 infection of non-dividing cells through recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci, USA 1997; 94:9825-9830.

    Google Scholar 

  46. Gallay P, Stitt V, Mundy C et al. 1996. Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. J Virol 70:1027-1032.

    Google Scholar 

  47. Paillart JC, Gottlinger HG. Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag memrane targeting. J Virol 1999; 73:2604-2602.

    Google Scholar 

  48. Fouchier RAM, Malim MH. Nuclear import of human immunodeficiency virus type-1 preintegration complexes. Adv Virus Res 1999; 52:275-299.

    Google Scholar 

  49. Freed EO. Phosphorylation of residue 131 of HIV-1 matrix is not required for macrophage infection. Cell 1997; 88:171-173.

    Google Scholar 

  50. Freed EO, Englund G, Martin, MA. Role of the basic domain of human immunodeficiency virus type 1 matrix in macrophage infection. J Virol 1995; 69:3949-3954.

    Google Scholar 

  51. Fouchier RAM, Meyer BE, Simon JHM et al. HIV-1 infection of non-dividing cells: Evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import. EMBO J 1997; 16:4531-4539.

    Google Scholar 

  52. Freed, EO. HIV-1 gag proteins: Diverse functions in the virus life cycle. Virology 1998; 251:1-15.

    Google Scholar 

  53. Haffar OK, Popov S, Dubrosvsky L et al. Two nuclear localization signals in the HIV-1 matrix protein regulate nuclear import of the HIV-1 pre-integration complex. J Mol Biol 2000; 299:359-368.

    Google Scholar 

  54. Reil H, Bukovsky AA, Gelderblom HR et al. Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J 1998; 17:2699-2708.

    Google Scholar 

  55. Westervelt P, Henkel T, Trowbridge DB et al. Dual regulation of silent and productive infection in monocytes by distinct human immunodeficiency virus type 1 determinants. J Virol 1992; 66:3925-3931.

    Google Scholar 

  56. Conno RI, Chen BK, Choe S et al. Vpr is required for efficient replication of human immunodeficiency virus type 1 in mononuclear phagocytes. Virology 1995; 206:935-944.

    Google Scholar 

  57. Ballliet JW, Kolson DL, Eiger G et al. Distinct effects in primary macrophages and lymphocytes of the human immunodeficiency virus type 1 accessory genes, vpr, vpu, and nef: Mutational analysis of a primary HIV-1 isolate. Virology 1995; 206:935-934.

    Google Scholar 

  58. Popov S, Dubrovsky L, Lee MA et al. Critical role of reverse transcriptase in the inhibitory mechanism of CNI-H0294 on HIV-1 nuclear translocation. Proc Nat Acad Sci USA 1996; 93:11859-11864.

    Google Scholar 

  59. Vodicka MA, Koepp DM, Silver PA et al. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes & Dev 1998; 12:175-185.

    Google Scholar 

  60. Fouchier RA, Meyer BE, Simon JH et al. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J Virol 1998; 72:6004-6013.

    Google Scholar 

  61. Popov S, Rexach M, Blobel G et al. Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J Biol Chem 1998; 273:13347-13352.

    Google Scholar 

  62. Jenkins Y, McEntee M, Weis K et al. Characterization of HIV-1 vpr nuclear import: Analysis of signals and pathways. J Cell Biol 1998; 143:878-885.

    Google Scholar 

  63. Sherman MP, Noronha DE, Heusch MI et al. Nucleocytoplasmic shuttling by human immunodeficiency virus type 1 Vpr. J Virol 2001; 75:1522-1532.

    Google Scholar 

  64. Kamata M, Aida Y. Two putative alpha-helical domains of human immunodeficiency virus type 1 Vpr mediate nuclear localization. J Virol 2000; 74:7179-7186.

    Google Scholar 

  65. Adam SA, Sterne Marr R, Gerace L. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 1990; 111:807-816.

    Google Scholar 

  66. Popov S, Rexach M, Zybarth G et al. Viral protein R regulates nuclear import of the HIV-1 preintegration complex. EMBO J 1998; 17:909-917.

    Google Scholar 

  67. Fletcher TMI, Brichacek B, Stivahtis G et al. 1996. Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIVsm. EMBO J 15:6155-6165.

    Google Scholar 

  68. Stivahtis GL, Soares MA, Vodicka MA et al. Conservation and host-specificity of Vpr-mediated cell cycle arrest suggest a fundamental role in primate evolution and biology. J Virol 1997; 71:4331-4338.

    Google Scholar 

  69. Tsurutani N, Kubo M, Maeda Y et al. Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for effiecient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol 2000; 74:4795-4806.

    Google Scholar 

  70. Pluymers W, Cherepanov P, Schols D et al. Nuclear localization of human immunodeficiency virus type 1 Integrase expressed as a fusion protein with green fluorescent protein. Virology 1999; 258:327-332.

    Google Scholar 

  71. Bouyac-Bertoia M, Dvorin JD, Fouchier RAM et al. HIV-1 Integrase requires a functional NLS. Mol Cell 2001; 7(5):1025-1035.

    Google Scholar 

  72. Deminie CA, Emerman M. Functional exchange of an oncoretrovirus and a lentivirus matrix protein. J Virol 1994; 68:4442-4449.

    Google Scholar 

  73. Dupont S, Sharova N, DeHoratius C et al. A novel nuclear export activity in HIV-1 Matrix protein required for viral replication. Nature 1999; 402:681-685.

    Google Scholar 

  74. Zennou V, Petit C, Guetard D et al. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 2000; 101:173-185.

    Google Scholar 

  75. Charneau P, Mirambeau G, Roux P et al. HIV-1 reverse transcription a termination step at the center of the genome. J Mol Biol 1994; 241:651-662.

    Google Scholar 

  76. Charneau P, Alizon M, Clavel F. A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. J Virol 1992; 66:2814-2820.

    Google Scholar 

  77. Follenzi A, Ailles LE, Bakovic S et al. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Gen 2000; 25:217-222.

    Google Scholar 

  78. Sirven A, Plfumio F, Zennou V et al. The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood 2000; 96:4103-4110.

    Google Scholar 

  79. Rumbaugh JA, Fuentes GM, Bambara RA. Processing of an HIV replication intermediate by the human DNA replication enzyme FEN1. J Biol Chem 1998; 273:28740-28745.

    Google Scholar 

  80. Naldini L, Blomer U, Gallay P et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272:263-267.

    Google Scholar 

  81. Rey O, Canon J, Krogstad P. HIV-1 Gag protein associates with F-actin present in microfilaments. Virology 1996;220:530534.

    Google Scholar 

  82. Ott DE, Coren LV, Johnson DG et al. Actin-binding cellular proteins inside human immunodeficiency virus type 1. Virology 2000; 266:42-51.

    Google Scholar 

  83. Bukrinskaya A, Brichacek B, Mann A et al. Establishment of a functional human immunodeficiency virus typ 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med 1998; 188:2113-2125.

    Google Scholar 

  84. Kukolj G, Jones KS, Skalka AM. Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases. J Virol 1997; 71:843-847.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vodicka, M.A. Determinants for Lentiviral Infection of Non-Dividing Cells. Somat Cell Mol Genet 26, 35–49 (2001). https://doi.org/10.1023/A:1021022629126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021022629126

Keywords

Navigation