Skip to main content
Log in

Reduced Blood Levels of Reelin as a Vulnerability Factor in Pathophysiology of Autistic Disorder

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Autism is a severe neurodevelopmental disorder with potential genetic and environmental etiologies. Recent genetic linkage reports and biochemical analysis of postmortem autistic cerebellum point to Reelin, an important secretory extracellular protein, as being involved in the pathology of autism.

2. We hypothesized that blood levels of Reelin and its isoforms would be altered in autistic twins, and their first degree relatives versus normal controls.

3. We measured blood levels of unprocessed Reelin (410 kDa) and its proteolytic cleavage products (Reelins 330 and 180 kDa) as well as albumin and ceruloplasmin in 28 autistic individuals, their parents (13 fathers, 13 mothers), 6 normal siblings, and 8 normal controls using SDS-PAGE and western blotting.

4. Results indicated significant reductions in 410 kDa Reelin species in autistic twins (−70%, p < 0.01), their fathers (−62%, p < 0.01), their mothers (−72%, p < 0.01), and their phenotypically normal siblings (−70%, p < 0.01) versus controls. Reelin 330 kDa values did not vary significantly from controls. Reelin 180 kDa values for parents (fathers −32% p < 0.05 vs. controls, mothers −34%) declined when compared to controls. In contrast autistic Reelin 180 kDa increased, albeit nonsignificantly versus controls. Albumin and ceruloplasmin values for autistics and their first degree relatives did not vary significantly from controls. There were no significant meaningful correlations between Reelin, albumin and ceruloplasmin levels, age, sex, ADI scores, or age of onset.

5. These results suggest that Reelin 410 deficiency may be a vulnerability factor in the pathology of autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn., American Psychiatric Press, Washington, DC.

    Google Scholar 

  • Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., Rutter, M., and Lantos, P. (1998). A clinicopathological study of autism. Brain 121:889–905.

    PubMed  Google Scholar 

  • Bauman, M. L. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics 87:791–796.

    PubMed  Google Scholar 

  • Berg, D., Weishaupt, A., Francis, M. J., Miura, N., Yang, X. L., Goodyer, I.D., Naumann, M., Koltzenburg, M., Reiners, K., and Becker, G. (2000). Changes of copper-transporting proteins and ceruloplasmin in the centiform nuclei in primary adult-onset dystonia. Ann. Neurol. 47:827–830.

    PubMed  Google Scholar 

  • Courchesne, E. (1997). Brainstem, cerebellar, and limbic neuroanatomical abnormalities in autism. Curr. Opin. Neurobiol. 7:269–278.

    PubMed  Google Scholar 

  • D'Arcangelo, G., Homayouni, K., Keshvara, L., Rice, D. S., Sheldon, M., and Curran, T. (1999). Reelin is a ligand for lipoprotein receptors. Neuron 24:471–479.

    PubMed  Google Scholar 

  • D'Arcangelo, G., Miao, G. G., Chen, S.-C., Soares, H. D., Morgan, J. I., and Curran, T. (1995). A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723.

    PubMed  Google Scholar 

  • D'Arcangelo, G., Nakajima, K., Miyata, T., Ogawa, M., Mikoshiba, K., and Curran, T. (1997). Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J. Neurosci. 17:23–31.

    PubMed  Google Scholar 

  • Dulabon, L., Olson, E. C., Taglienti, M.G., Eisenhuth, S., McGrath, B., Walsh, C. A., Kreidberg, J. A., and Anton, E. S. (2000). Reelin binds alpha 3 beta 1 integrin and inhibits neuronal migration. Neuron 27:33–44.

    PubMed  Google Scholar 

  • Fatemi, S. H. (2001). Reelin mutations in man and mouse: From reeler mouse to schizophrenia, bipolar disorder, major depression, autism and lissencephaly. Mol. Psychiatry 6:129–133.

    PubMed  Google Scholar 

  • Fatemi, S. H., Earle, J. A., and McMenomy, T. (2000). Reduction in Reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry 5:654–663.

    PubMed  Google Scholar 

  • Fatemi, S. H., Kroll, J., and Stary, J.M. (2001a). Altered levels of Reelin and its isoforms in schizophrenia and mood disorders. Neuroreport 12:3209–3215.

    PubMed  Google Scholar 

  • Fatemi, S. H., Stary, J. M., Halt, A., and Realmuto,G. (2001b). Dysregulation of Reelin and Bcl-2 in autistic cerebellum. J. Autism and Dev. Disord. 31:529–535.

    Google Scholar 

  • Grant, S. G. N., Karl, K. A., Kiebler, M. A., and Kandel, E. R. (1995). Focal adhesion kinase in the brain: Novel subcellular localization and specific regulation by Fyn tyrosine kinase in mutant mice. Genes Dev. 9:1909–1921.

    PubMed  Google Scholar 

  • Guidotti, A., Auta, J., Davis, J., Dwivedi, Y., Grayson, D., Impagnatiello, F., Pandey, G., Pesold, C., Sharma, R., Uzunov,D., Costa, E., and DiGiorgi Gerevini, V. (2000). Decrease in Reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: A postmortem brain study. Arch. Gen. Psychiatry 57(11):1061–1069.

    PubMed  Google Scholar 

  • Hiesberger, T., Trommsdorff, M., Howell, B. W., Goffinet, A., Mumby, M. C., Cooper, J. A., and Herz, J. (1999). Direct binding of Reelin to VLDL receptor and ApoE receptor induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489.

    PubMed  Google Scholar 

  • Hong, S. E., Shugart, Y. Y., Huang, D. T., Shahwan, S. A., Grant, P. E., Hourihane, J. O., Martin, N. D., and Walsh, C. A. (2000). Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat. Genet. 26(1):93–96.

    PubMed  Google Scholar 

  • Impagnatiello, F., Guidotti, A., Pesold, C., Dwlivedi, Y., Caruncho, H., Pisu, M. G., Uzunov, D. P., Smallheiser, N. R., Davis, J. M., pandey, G. N., Pappas, G. D., Tueting, P., Sharma, R. P., and Costa, E. (1998). A decrease of Reelin expression as a putative vulnerability factor in schizophrenia. Proc. Natl. Acad. Sci. U.S.A.95:15718–15723.

    PubMed  Google Scholar 

  • Kanner L. (1943). Autistic disturbances of affective contact. Nerv. Child. 2:217–250.

    Google Scholar 

  • Keller, F., Persico, A. M., Zelante, L., Gasperial, P., D'Agruma, N., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K.-L., Conciatori, M., Marino, R., Baldi, A., Quattrocchi, C. C. (2000). Reelin gene alleles and haplotypes are associated with autistic disorder. Society forNeuroscience 26:77(31.11).

  • Keshvara, L., Benhayon, D., Magdaleno, S., and Curran, T. (2001). Identification of Reelin-induced sitesof tyrosyl phosphorylation on disabled-1. J. Biol. Chem. 276:16008–16014.

    PubMed  Google Scholar 

  • Lacor, P., Grayson, D. R., Auta, J., Sugaya, I., Costa, E., and Guidotti, A. (2000). Reelin secretion from glutamatergic neurons in culture is independent from neurotransmitter regulation. Proc. Natl. Acad. Sci. U.S.A 97:3556–3561.

    PubMed  Google Scholar 

  • Lord, C., Rutter, M., and LeCouteur,A. (1994).Autism diagnostic interview-revised:Arevised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24:659–685.

    PubMed  Google Scholar 

  • Ogawa, M., Miyata, T., Nakajima, K., Yagyu, K., Seike, M., Ikenaka, K., Yamamoto, H., and Mikoshiba, K. (1995). The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial moelcule for laminar organization of cortical neurons. Neuron 14(5):899–912.

    PubMed  Google Scholar 

  • Persico, A. M., D'Agruma, L., Maiorano, N., Totaro, A., Militerni, R., Bravaccio, C., Wassink, T. H., Schneider, C., Melmed, R., Trillo, S., Montecchi, F., Palermo, M., Pascucci, T., Puglisi-Allegra, S., Reichelt, K. L., Conciatori, M., Marino, R., Quattrocchi, C. C., Baldi, A., Zelante, L., Gasparini, P., and Keller, F. (2001). Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol. Psychiatry 6(2):150–159.

    PubMed  Google Scholar 

  • Quattrocchi, C. C., Wannenes, F., Persico, A. M., Ciafre, S. A., D'Arcangelo, G., Farace, M. G., and Keller, F. (2002). Reelin is a serine protease of the extracellular matrix. J. Biol. Chem. 277(1):303–309.

    PubMed  Google Scholar 

  • Robinson, C., Shore, R. C., Bonass, W. A., Brokkes, S. J., Boteva, E., and Kirkham, J. (1998). Identification of human serum albumin in human caries lesions of enamel: The role of putative inhibitors of remineralization. Caries Res. 32:193–199.

    PubMed  Google Scholar 

  • Rodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., and Romano, J. (1996). Embryological origin for autism: Developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 370:247–261.

    PubMed  Google Scholar 

  • Rodriguez, M. A., Pesold, C., Liu, W. S., Kriho, V., Guidotti, A., Pappas, G. D., and Costa, E. (2000). Colocalization of integrin receptors and Reelin in dendritic spine post-synaptic densities of adult non-human primate cortex. Proc. Natl. Acad. Sci. U.S.A 97:3550–3555.

    PubMed  Google Scholar 

  • Senzaki, K., Ogawa, M., and Yagi, T. (1999). Proteins of the CNR family are multiple receptors for Reelin. Cell 99:635–647.

    PubMed  Google Scholar 

  • Smalheiser, N. R., Costa, E., Guidotti, A., Impagnatiello, F., Auta, J., Lacor, P., Kriho, V., and Pappas, G. D. (2000). Expression of Reelin in adult mammalian blood, liver, pituitary pars intermedia, and adrenal chromaffin cells. Proc. Natl. Acad. Sci. U.S.A 97(3):1281–1286.

    PubMed  Google Scholar 

  • Stockinger, W., Brandes, C., Fasching, D., Hermann, M., Gotthardt, M., Herz, J., Schneider, W. J., and Nimpf, J. (2000). The Reelin receptor ApoER2 recruits JNK-interacting proteins-1 &-2. J. Biol. Chem. 275:25625–25632.

    PubMed  Google Scholar 

  • Sweet, H. O., Bronson, R. T., Johnson, K. R., Cook, S. A., and Davisson, M. T. (1995). Scrambler, a new neurological mutation of the mouse with abnormalities of neuronal migration. Metam. Genome 7:798–802.

    Google Scholar 

  • Trommsdorff, M., Gotthardt, M., Hiesberger, T., Shelton, J., Stockinger, W., Nimpf, J., Hammer, R. E., Richardson, J. A., and Herz, J. (1999). Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97(6):689–701.

    PubMed  Google Scholar 

  • Yoneshima, H., Nagata, E., Matsurgate, M., Yamada, K., Nakajima, K., Miyata, T., Ogawa, M., and Mikoshiba, K. (1997). A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen-reelin. Neurosci. Res. 29(3):217–223.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatemi, S.H., Stary, J.M. & Egan, E.A. Reduced Blood Levels of Reelin as a Vulnerability Factor in Pathophysiology of Autistic Disorder. Cell Mol Neurobiol 22, 139–152 (2002). https://doi.org/10.1023/A:1019857620251

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019857620251

Navigation