Skip to main content
Log in

Editorial: Genetics of Brain Function and Cognition

  • Editorial Commentary
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience

This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the “black box” between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Almasy, I., and Blangero, J. (2001). Endophenotypes as quantitative risk factors for psychiatric disease: Rationale and study design. Am. J. Med. Genet. 105: 42–44.

    Google Scholar 

  • Almasy, L., Porjesz, B., Blangero, J., Goate, A., Edenberg, H. J., Chorlian, D. B., Kuperman, S., O'Connor, S. J., Rohrbaugh, J., Bauer, L. O., Foroud, T., Rice, J. P., Reich, T., and Begleiter, H. (2001). Genetics of event-related brain potentials in response to a semantic priming paradigm in families with a history of alcoholism. Am. J. Hum. Genet. 68: 128–135.

    Google Scholar 

  • Baddeley, A. D. (1986). Working memory. Oxford, Clarendon Press.

    Google Scholar 

  • Begleiter, H., Porjesz, B., Reich, T., Edenberg, H. J., Goate, A., Blangero, J., Almasay, L., Foroud, T., Van Eerdewegh, P., Polich, J., Rohrbaugh, J., Kuperman, S., Bauer, L. O., O'Connor, S. J., Chorlian, D. B., Li, T. K., Conneally, P. M., Hesselbrock, V., Rice, J. P., Schukit, M. A., Cloninger, R., Nurnberger, Jr, J., Crowe, R., and Bloom, F. E. (1998). Quantitative trait loci analysis of human event-related brain potentials: P3 voltage. Electroenc. Clin. Neurophysiol. 108: 244–250.

    Google Scholar 

  • Bibb, J. A., Chen, J., Taylor, J. R., Svenningsson, P., Nishi, A., Snyder, G. L., Yan, Z., Sagawa, Z. K., Ouimet, C. C., Nairn, A. C., Nestler, E. J., and Greengard, P. (2001). Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 410: 376–380.

    Google Scholar 

  • Boomsma, D. I. (1993). Current status and future prospects in twin studies of the development of cognitive abilities, infancy to old age. In T. J. Bouchard and P. Propping (eds.), Twins as a tool of behavioral genetics, Chichester, Wiley & Sons, pp. 67–82.

    Google Scholar 

  • Boomsma, D. I., Anokhin, A., and de Geus, E. J. C. (1997). Genetics of electrophysiology: Linking genes, brain and behavior. Curr. Dir. Psychol. Sci. 6: 106–110.

    Google Scholar 

  • Boomsma, D. I., and van Baal, G. C. M. (1998). Genetic influences on childhood IQ in 5-and 7-year old Dutch twins. Develop. Neuropsychol. 14: 115–126.

    Google Scholar 

  • Bouchard, T. J., and McGue, M. (1981). Familial studies of intelligence: A review. Science 212: 1055–1059.

    Google Scholar 

  • Cardon, L. E., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F., and DeFries, J. C. (1994). Quantitative trait locus for reading disability on chromosome 6. Science 266: 276–279.

    Google Scholar 

  • Carlson, S. R., Katsanis, J., Iacono, W. G., and Mertz, A. K. (1999). Substance dependence and externalizing psychopathology in adolescent boys with small, average, or large P300 event-related potential amplitude. Psychophysiology 36: 583–590.

    Google Scholar 

  • Cherny, S., and Cardon, L. (1994). General cognitive ability. In J. DeFries, R. Plomin, and D. Fulker (eds.), Nature and nurture during middle childhood, Oxford, Blackwell Publishers, pp. 46–56.

    Google Scholar 

  • Daneman, M., and Merikle, P. M. (1996). Working memory and language comprehension: A meta-analysis. Psychonomic Bull. & Rev. 3: 422–433.

    Google Scholar 

  • Deary, I. J., and Stough, C. (1996). Intelligence and inspection time. Am. Psychol. 51: 599–608.

    Google Scholar 

  • de Geus, E. J. C., and Boomsma, D. I. (in press). A genetic neuroscience approach to human cognition. Eur. Psychol.

  • Devlin, B., Daniels, M., and Roeder, K. (1997). The heritability of IQ. Nature 388: 468–471.

    Google Scholar 

  • Donchin, E., and Coles, M. (1988). Is the P300 component a manifestation of context updating? Behav. Brain Sci. 11: 357–427.

    Google Scholar 

  • Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., and Emslie, H. (2000). A neural basis for general intelligence. Science 289: 457–460.

    Google Scholar 

  • Fabiani, M., Gratton, G., and Coles, M. G. H. (2000). Event-related brain potentials: Methods, theory and applications. In Caccioppo, J. T., Tassinary, L. G., and Berntson, G. G. (eds.), Handbook of psychophysiology Cambridge, UK, Cambridge University Press, pp. 53–84.

    Google Scholar 

  • Fisher, S. E., Marlow, A. J., Lamb, J., Maestrini, E., Williams, D. F., Richardson, A. J., Weeks, D. E., et al. (1999). A quantitativetrait locus on chromosome 6p influences different aspects of developmental dyslexia. Am. J. Hum. Genet. 64: 146–156.

    Google Scholar 

  • Flint, J. (1999). The genetic basis of cognition. Brain 122: 2015–2031.

    Google Scholar 

  • Gayán, J., Smith, S. D., Cherny, S. S., Cardon, L. R., Fulker, D. W., Brower, A. M., Olson, R. K., et al. (1999). Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am. J. Hum. Genet. 64: 157–164.

    Google Scholar 

  • Geffen, G., Wright, M., Green, H., Gillespie, N., Smyth, D., Evens, D., and Geffen, L. (1997). Effects of memory load and distraction on performance and event-related slow potentials in a visuospatial working memory task. J. Cog. Neurosci. 9: 743–757.

    Google Scholar 

  • Hagoort, P., and Brown, C. M. (2000). ERP effects of listening to speech compared to reading: The P600/SPS to syntactic violations in spoken sentences and rapid serial visual presentation. Neuropsychologia 38: 1531–1549.

    Google Scholar 

  • Ivic, L., Pyrski, M. M., Margolis, J. W., Richards, L. J., Firestein, S., and Margolis, F. L. (2000). Adenoviral vector-mediated rescue of the OMP-null phenotype in vivo. Nat. Neurosci. 3: 1113–1120.

    Google Scholar 

  • Jensen, A. R. (1998). The g factor: The science of mental ability. Westport, CT, Praeger.

    Google Scholar 

  • Katsanis, J., Iacono, W. G., McGue, M. K., and Carlson, S. R. (1997). P300 event-related potential heritability in monozygotic and dizygotic twins. Psychophysiology 34: 47–58.

    Google Scholar 

  • Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. Int. J. Psychophysiol. 24: 61–100.

    Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 29: 169–195.

    Google Scholar 

  • Kopp, B., Mattler, U., Goertz, R., and Rist, F. (1996). N2, P3 and the lateralized readiness potential in a no-go task involving selective response priming. Electroencephalogr. Clin. Neurophysiol. 99: 19–27.

    Google Scholar 

  • Kramer, A. F., Humphrey, D. G., Larish, J. F., Logan, G. D., and Strayer, D. L. (1994). Aging and inhibition: Beyond a unitary view of inhibitory processing in attention. Psychol. Aging 9: 491–512.

    Google Scholar 

  • Kruglyak, L. (1999). Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat. Genet. 22: 139–144.

    Google Scholar 

  • Kutas, M., and Iragui, V. (1998). The N400 in a semantic categorization task across 6 decades. Electroencephalogr. Clin. Neurophysiol. 108: 456–471.

    Google Scholar 

  • Kuperberg, G., and Stephan, H. (2000). Schizophrenia and cognitive function. Curr. Opin. Neurobiol. 10: 205–210.

    Google Scholar 

  • Lander, E. S. (1988). Splitting schizophrenia. Nature 336: 105–106.

    Google Scholar 

  • Leboyer, M., Bellivier, F., Nosten-Bertrand, M., Jouvent, R., Pauls, D., and Mallet, J. (1998). Psychiatric genetics: Search for phenotypes. Trends Neurosci. 21: 102–105.

    Google Scholar 

  • Mangun, G. R., Buonocore, M. H., Girelli, M., and Jha, A. P. (1998). ERP and fMRI measures of visual spatial selective attention. Hum. Brain Mapp. 6: 383–389.

    Google Scholar 

  • McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A., and Plomin, R. (1997). Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276: 1560–1563.

    Google Scholar 

  • McKusick, V. A. (1998). Mendelian inheritance in man: Catalogs of human genes and genetic disorders. Baltimore, Johns Hopkins University Press.

    Google Scholar 

  • Näätänen, R., and Alho, K. (1995). Mismatch negativity: A unique measure of sensory processing in audition. Int. J. Neurosci. 80: 317–337.

    Google Scholar 

  • Noble, E. P., Berman, S. M., Ozkaragoz, T. Z., and Ritchie T. (1994). Prolonged P300 latency in children with the D2 dopamine receptor A1 allele. Am. J. Hum. Genet. 54: 658–668.

    Google Scholar 

  • O'Connor, S., Morzorati, S. J. C., and Li, T. (1994). Heritable features of the auditory oddball event-related potential: Peaks, latencies, morphology and topography. Electroen. Clin. Neuro. 92: 115–125.

    Google Scholar 

  • Pierson, A., Jouvent, R., Quintin, P., Perez-Diaz, F., and Leboyer, M. (2000). Information processing deficits in relatives of manic depressive patients. Psychol. Med. 30: 545–555.

    Google Scholar 

  • Plomin, R. (1999). Genetics and general cognitive ability. Nature 402 ( Suppl): C25-C29.

    Google Scholar 

  • Polich, J., Pollock, V., and Bloom, F. (1994). Meta-analysis of P300 amplitude from males at risk for alcoholism. Psychol. Bull. 115: 55–73.

    Google Scholar 

  • Polich, J., and Herbst, K. L. (2000). P300 as a clinical assay: Rationale, evaluation, and findings. Int. J. Psychophysiol. 38: 3–19.

    Google Scholar 

  • Polich, J., and Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biol. Psychol. 41: 103–146.

    Google Scholar 

  • Rampon, C., Tang, Y. P., Goodhouse, J., Shimizu, E., Kyin, M., and Tsien, J. Z. (2000). Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3: 238–244.

    Google Scholar 

  • Ruchkin, D. S., Canoune, H. L., Johnson, R., and Ritter, W. (1995). Working memory and preparation elicit different patterns of slow wave event-related brain potentials. Psychophysiology 32: 399–410.

    Google Scholar 

  • Scheffers, M. K., Coles, M. G., Bernstein, P., Gehring, W. J., and Donchin, E. (1996). Event-related brain potentials and error-related processing: an analysis of incorrect responses to go and no-go stimuli. Psychophysiology 33: 42–53.

    Google Scholar 

  • Sergent, J., Ohta, S., and MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain 115: 15–36.

    Google Scholar 

  • Silva, A. J., Paylor, R., Wehner, J. M., and Tonegawa, S. (1992). Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 206–211.

    Google Scholar 

  • Strachan, T., and Read, A. P. (1999). Human molecular genetics, Vol. 2. Oxford, BIOS Scientific Publishers.

    Google Scholar 

  • Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., and Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature 401: 63–69.

    Google Scholar 

  • Tokuyama, W., Okuno, H., Hashimoto, T., Xin-Li, Y., and Miyashita, Y. (2000). BDNF upregulation during declarative memory formation in monkey inferior temporal cortex. Nat. Neurosci. 3: 1134–1142.

    Google Scholar 

  • Tsien, J. Z. (2000). Linking Hebb' coincidence-detection to memory formation. Curr. Opin. Neurobiol. 10: 266–273.

    Google Scholar 

  • van Baal, G. C., de Geus, E. J. C., and Boomsma, D. I. (1998). Genetic influences on EEG coherence in 5-year-old twins. Behav. Genet. 28: 9–19.

    Google Scholar 

  • Van Beijsterveldt, C. E. M., Molenaar, P. J. M., De Geus, E. J. C. and Boomsma, D. I. (1998). Individual differences in the P300: a genetic study in adolescent twins. Biol. Psychol. 47: 97–120.

    Google Scholar 

  • Van Boxtel, G. J., and Brunia, C. H. (1994). Motor and non-motor aspects of slow brain potentials. Biol. Psychol. 38: 37–51.

    Google Scholar 

  • Vernon, P. A. (1989). The heritability of measures of speed of information processing. Pers. Individ. Dif. 10: 573–576.

    Google Scholar 

  • Vernon, P. A. (1993). Biological approaches to the study of human intelligence. Norwood, NJ, Ablex.

    Google Scholar 

  • Williams, J. T., Begleiter, H., Porjesz, B., Edenberg, H. J., Foroud, T., Reich, T., Goate, A., Van Eerdewegh, P., Almasy, L., and Blangero, J. (1999). Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. II. Alcoholism and event-related potentials. Am. J. Hum. Genet. 65: 1148–1160.

    Google Scholar 

  • Wright, M., de Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., et al. (2001). Genetics of cognition: Outline of a collaborative twin study. Twin Res. 4: 48–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Geus, E.J.C., Wright, M.J., Martin, N.G. et al. Editorial: Genetics of Brain Function and Cognition. Behav Genet 31, 489–495 (2001). https://doi.org/10.1023/A:1013360909048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013360909048

Navigation