Skip to main content
Log in

H+ and HCO3− Transporters in Human Salivary Ducts. An Immunohistochemical Study

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

The presence and cellular distribution of key H+ and HCO3 transport proteins was studied in human salivary ducts. Immunofluorescence and immunoperoxidase light microscopy was applied, using specific antibodies against the NHE1 and NHE3 isoforms of the Na+H+ exchanger, against the 31 and 70 kDa subunits of the vacuolar H+-ATPase and against the electrogenic Na+-HCO3 cotransporter. The results show basolateral NHE1 and apical NHE3 in human submandibular, parotid and sublingual duct cells. Vacuolar H+-ATPase was found predominantly in the apical membrane of parotid, submandibular and sublingual duct cells, although it was absent in certain parotid striated duct cells. The Na+-HCO3 cotransporter was predominantly expressed in the apical membrane of parotid and sublingual striated ducts, and intracellularly distributed in the distal parts of the gland tree and in submandibular ducts. The results indicate that HCO3 transport properties of salivary ducts may vary not only between gland and species, but even in different duct segments of the same gland as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I (1998) Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem 273: 17689–17695.

    Google Scholar 

  • Alper SL, Natale J, Gluck S, Lodish HF, Brown D (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci USA 86: 5429–5433.

    Google Scholar 

  • Bevensee MO, Schmitt BM, Choi I, Romero MF, Boron WF (2000) An electrogenic Na+-HCO 3 cotransporter (NBC) with a novel COOH-terminus, cloned from rat brain. Am J Physiol 278: C1200–C1211.

    Google Scholar 

  • Brown D, Lydon J, McLaughlin M, Stuart-Tilley A, Tyszkowski R, Alper SL (1996) Antigen retrieval in cryostat tissue sections and cultured cells by treatment with sodium dodecyl sulfate (SDS). Histochem Cell Biol 105: 261–267.

    Google Scholar 

  • Burnham CE, Amlal H, Wang Z, Shull GE, Soleimani M(1997) Cloning and functional expression of a human kidneyNa+:HCO 3 cotransporter. J Biol Chem 272: 19111–19114.

    Google Scholar 

  • Choi I, Romero MF, Khandoudi N, Bril A, Boron WF (1999) Cloning and characterization of a human electrogenic Na+-HCO 3 cotransporter isoform (hhNBC). Am J Physiol 276: C576–C584.

    Google Scholar 

  • Cook DI, Van Lennep EW, Roberts ML, Young JA (1994) Secretion by the major salivary glands. In: Johnson LR, ed. Physiology of the Gastrointestinal Tract, 3rd edn. New York: Raven, pp. 1061–1117.

    Google Scholar 

  • Dawes C (1969) The effects of flow rate and duration of stimulation on the concentrations of protein and the main electrolytes in human parotid saliva. Arch Oral Biol 14: 277–294.

    Google Scholar 

  • Ferguson DB (1975) Salivary glands and saliva. In: Lavelle CLB, ed. Applied Physiology of the Mouth. Bristol: John Wright, pp. 145–179.

    Google Scholar 

  • Goss GG, Woodside M, Wakabayashi S, Pouyssegur J, Waddell T, Downey GP, Grinstein S (1994) ATP dependence of NHE-1, the ubiquitous isoform of the Na+/H+ antiporter. Analysis of phosphorylation and subcellular localization. J Biol Chem 269: 8741–8748.

    Google Scholar 

  • He X, Tse CM, Donowitz M, Alper SL, Gabriel SE, Baum BJ (1997) Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflugers Arch 433: 260–268.

    Google Scholar 

  • Ishiguro H, Steward MC, Lindsay AR, Case RM (1996) Accumulation of intracellular HCO 3 by Na+-HCO 3 cotransport in interlobular ducts from guinea pig pancreas. J Physiol 495: 169–178.

    Google Scholar 

  • Knauf H, Frömter E (1970a) Elektrische Untersuchungen am Hauptausf ührungsgang der Speicheldrüse des Menschen. I. Potentialmessung. Pflugers Arch 316: 238–258.

    Google Scholar 

  • Knauf H, Frömter E (1970b) Elektrische Untersuchungen am Hauptausf ührungsgang der Speicheldrüse des Menschen. II. Bestimmung des Kurzschlusstromes. Pflugers Arch 316: 259–274.

    Google Scholar 

  • Knauf H, Lubcke R, Kreutz W, Sachs G (1982) Interrelationships of ion transport in rat submaxillary duct epithelium. Am J Physiol 242: F132–F139.

    Google Scholar 

  • Lee MG, Schultheis PJ, Yan M, Shull GE, Bookstein C, Chang E, Tse M, Donowitz M, Park K, Muallem S (1998) Membrane-limited expression and regulation of Na+-H+ exchanger isoforms by P2 receptors in the rat submandibular gland duct. J Physiol 513: 341–357.

    Google Scholar 

  • Luo X, Choi JY, Ko SB, Pushkin A, Kurtz I, Ahn W, Lee MG, Muallem S (2001) HCO 3 salvage mechanisms in the submandibular gland acinar and duct cells. J Biol Chem 276: 9808–9816.

    Google Scholar 

  • McLean IW, Nakane PF (1974) Periodate-lysine paraformaldehyde fixative: a new fixative for immunoelectron microscopy. J Histochem Cytochem 22: 1077–1083.

    Google Scholar 

  • Marino CR, Jeanes V, Boron WF, Schmitt BM (1999) Expression and distribution of the Na+-HCO 3 cotransporter in human pancreas. Am J Physiol 277: G487–G494.

    Google Scholar 

  • Novak I, Christoffersen BC (2001) Secretin stimulatesHCO 3 and acetate efflux but not Na+/HCO 3 uptake in rat pancreatic ducts. Pflugers Arch 441: 761–771.

    Google Scholar 

  • Park K, Olschowka JA, Richardson LA, Bookstein C, Chang EB, Melvin JE (1999) Expression of multiple Na+/H+ exchanger isoforms in rat parotid acinar and ductal cells. Am J Physiol 276: G470–G478.

    Google Scholar 

  • Parkkila S, Kaunisto K, Rajaniemi L, Kumpulainen T, Jokinen K, Rajaniemi H (1990) Immunohistochemical localization of carbonic anhydrase isoenzymes VI, II and I in human parotid and submandibular glands. J Histochem Cytochem 38: 941–947.

    Google Scholar 

  • Paulais M, Cragoe EJ, Turner RJ (1994) Ion transport mechanisms in rat parotid intralobular striated ducts. Am J Physiol 266: C1594–C1602.

    Google Scholar 

  • Pushkin A, Abuladze N, Lee I, Newman D, Hwang J, Kurtz I (1999) Cloning, tissue distribution, genomic organization and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem 274: 16569–16575.

    Google Scholar 

  • Romero MF, Fong P, Berger UV, Hediger MA, Boron WF(1998) Cloning and functional expression of rkNBC, an electrogenic Na+-HCO 3 cotransporter from rat kidney. Am J Physiol 274: F425–F432.

    Google Scholar 

  • Roussa E, Thévenod F (1998) Distribution of V-ATPase in rat salivary gland. Eur J Morphol 36(Suppl.): 147–152.

    Google Scholar 

  • Roussa E, Thévenod F, Sabolic I, Herak-Kramberger CM, Nastainczyk W, Bock R, Schulz I (1998) Immunolocalization of vacuolar-type H+-ATPase in rat submandibular gland and adaptive changes induced by acid–base disturbances. J Histochem Cytochem 46: 91–100.

    Google Scholar 

  • Roussa E, Romero MF, Schmitt BM, Boron WF, Alper SL, Thévenod F (1999) Immunolocalization of anion exchanger AE2 and Na+-HCO 3 cotransporter in rat parotid and submandibular glands. Am J Physiol 277: G1288–G1296.

    Google Scholar 

  • Schmitt BM, Biemesderfer D, Romero MF, Boulpaep EL, Boron WF (1999) Immunolocalization of the electrogenic Na+/HCO 3 cotransporter in mammalian and amphibian kidney. Am J Physiol 276: F27–F38.

    Google Scholar 

  • Sommer HM, Kaiser D, Drack E (1975) pH and bicarbonate excretion in the rat parotid gland as a function of salivary rate. Pflugers Arch 355: 353–360.

    Google Scholar 

  • Thaysen JH, Thorn NA, Schwartz IL (1954) Excretion of sodium, potassium, chloride and carbon dioxide in human parotid saliva. Am J Physiol 178: 155–159.

    Google Scholar 

  • Thévenod F, Roussa E, Schmitt BM, Romero MF (1999) Cloning and immunolocalization of a rat pancreatic Na+ bicarbonate cotransporter. Biochem Biophys Res Commun 264: 291–298.

    Google Scholar 

  • Young JA, Martin CJ, Asz M, Weber FD (1970) A microperfusion investigation of bicarbonate secretion by the rat submaxillary gland. The action of parasympathomimetic drug on electrolyte transport. Pflugers Arch 319: 185–199.

    Google Scholar 

  • Zhao H, Star RA, Muallem S (1994) Membrane localization of H+ and HCO 3 transporters in the rat pancreatic duct. J Gen Physiol 104: 57–85.

    Google Scholar 

  • Zhao H, Xu X, Diaz J, Muallem S (1995) Na+, K+, and H+/HCO 3 transport in submandibular salivary ducts. Membrane localization of transporters. J Biol Chem 270: 19599–19605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roussa, E. H+ and HCO3− Transporters in Human Salivary Ducts. An Immunohistochemical Study. Histochem J 33, 337–344 (2001). https://doi.org/10.1023/A:1012471023913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012471023913

Keywords

Navigation