Skip to main content
Log in

Neurochemical and Molecular Pharmacological Aspects of the GABAB Receptor

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metabotropic γ-aminobutyric acid (GABA)B receptors are known to modulate the synaptic release of various neurotransmitters in the nervous system. Activation of GABAB receptor induces the inhibition of adenylyl cyclase activity, while it does not stimulate the formation of inositol phosphates. Activation of a potassium conductance and suppression of a calcium conductance are also recognized, similarly to some of G protein-coupled receptors. Recent molecular cloning has revealed that GABAB receptor possesses a large extracellular domain including the binding site for GABA and seven transmembrane domains. Their molecular structures in the brain are unique and interesting because of heterodimerization consisting of two distinct genes: GABABR1 and GABABR2. Such assembled receptors can be classified as a novel type of the metabotropic receptor superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Doble, A. and Martin, I. L. 1992. Multiple benzodiazepine receptors: no reason for anxiety. Trends Pharmacol. Sci. 13:76-81.

    Google Scholar 

  2. Burt, D. B. and Kamatchi, G. L. 1991. GABAA receptor subtypes: from pharmacology to molecular pharmacology. FASEB J. 5:2916-2923.

    Google Scholar 

  3. Sieghart, W. 1995. Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47:181-234.

    Google Scholar 

  4. Sigel, E. and Buhr, A. 1997. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci. 18:425-429.

    Google Scholar 

  5. Barnard, E. A., Skolnick, P., Olsen, R. W., Mohler, H., Sieghart, W., Biggio, G., Braestrup, C., Bateson, A. N., and Langer, S. Z. 1998. International union of pharmacology. XV. Subtypes of γ-Aminobutyric acidA receptors: Classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50:291-314.

    Google Scholar 

  6. Mehta, A. K. and Ticku, M. K. 1999. An update on GABAA receptors. Brain Res. Rev. 29:196-217.

    Google Scholar 

  7. Johnston, G. A. R. 1996. GABAC receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol. Sci. 17: 319-323.

    Google Scholar 

  8. Bowery, N. G., Hill, D. R., Hudson, A. L., Doble, A., Middle-miss, D. N., Shaw, J., and Turnbull, M. 1980. (-)-Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92-94.

    Google Scholar 

  9. Hill, D. R. and Bowery, N. G. 1981. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABAB sites in rat brain. Nature 290:149-152.

    Google Scholar 

  10. Wojcik, W. J. and Neff, N. H. 1984. γ-Aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum: these receptors may be associated with granule cells. Mol. Pharmacol. 25:24-28.

    Google Scholar 

  11. Hill, D. R., Bowery, N. G., and Hudson, A. L. 1984. Inhibition of GABAB receptor binding by guanyl nucleotides. J. Neurochem. 42:652-657.

    Google Scholar 

  12. Asano, T., Ui, M., and Ogasawara, N. 1985. Prevention of the agonist binding to γ-aminobutyric acid B receptors by guanine nucleotides and islet-activating protein, pertussis toxin, in bovine cerebral cortex. J. Biol. Chem. 260:12653-12658.

    Google Scholar 

  13. Asano, T. and Ogasawara, N. 1986. Uncoupling of γ-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Mol. Pharmacol. 29:244-249.

    Google Scholar 

  14. Xu, J. and Wojcik, W. J. 1986. Gamma aminobutyric acid B receptor-mediated inhibition of adenylate cyclase in cultured cerebellar granule cells: blockade by islet-activating protein. J. Pharmacol. Exp. Ther. 239:568-573.

    Google Scholar 

  15. Ohmori, Y., Hirouchi, M., Taguchi, J., and Kuriyama, K. 1990. Functional coupling of γ-aminobutyric acidB receptor with calcium ion channel and GTP-binding protein and its alteration following solubilization of the γ-aminobutyric acid</del>B receptor. J. Neurochem. 54:80-85.

    Google Scholar 

  16. Malcangio, M. and Bowery, N. G. 1993. GABAB receptor-mediated inhibition of forskolin-stimulated cyclic AMP accumulation in rat spinal cord. Neurosci. Lett. 158:189-92.

    Google Scholar 

  17. Karbon, E. W., Duman, R. S., and Enna, S. J. 1984. GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex. Brain Res. 306:327-332.

    Google Scholar 

  18. Karbon, E. W. and Enna, S. J. 1985. Characterization of the relationship between γ-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 27:53-59.

    Google Scholar 

  19. Wojcik, W. J., Ulivi, M., Paez, X., and Costa, E. 1989. Islet-activating protein inhibits the β-adrenergic receptor facilitation elicited by β-aminobutyric acidB receptors. J. Neurochem. 53:753-758.

    Google Scholar 

  20. Scherer, R. W., Ferkany, J. W., Karbon, E. W., and Enna, S. J. 1989. γ-Aminobutyric acidB receptor activation modifies agonist binding to β-adrenergic receptors in rat brain cerebral cortex. J. Neurochem. 53:989-991.

    Google Scholar 

  21. Tang, W. J. and Gilman, A. G. 1991. Type specific regulation of adenylyl cyclase by G protein βγsubunits. Science 254: 1500-1503.

    Google Scholar 

  22. Federman, A. D., Conklin B. R., Schrader, K. A., Reed, R. R., and Bourne, H. R. 1992. Hormonal stimulation of adenylyl cyclase via Gi protein βγsubunits. Nature 356:159-161.

    Google Scholar 

  23. Andrade, R. 1993. Enhancement of β-adrenergic responses by Gi-linked receptors in rat hippocampus. Neuron 10:83-88.

    Google Scholar 

  24. Hashimoto, T. and Kuriyama, K. 1997. In vivo evidence that GABAB receptors are negatively coupled to adenylate cyclase in rat striatum. J. Neurochem. 69:365-370.

    Google Scholar 

  25. Bormann, J. 1988. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 11:112-116.

    Google Scholar 

  26. Newberry, N. R. and Nicoll, R. A. 1984. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. Nature 308:450-452.

    Google Scholar 

  27. Dutar, P. and Nicoll, R. A. 1988. A physiological role for GABAB receptors in the central nervous system. Nature 332:156-158.

    Google Scholar 

  28. Dutar, P. and Nicoll, R. A. 1988. Pre-and postsynaptic GABAB receptors in the hippocampus have different pharmacological properties. Neuron 1:585-591.

    Google Scholar 

  29. Holz, G. G., Rane, S. G., and Dunlap, K. 1986. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670-672.

    Google Scholar 

  30. Deisz, D. A. and Lux, H. D. 1985. γ-Aminobutyric acid induced depression of Ca2+currents of chick sensory neurons. Neurosci. Lett. 56:205-210.

    Google Scholar 

  31. Scott, R. H., Wooten, J. F., and Dorphin, A. C. 1990. Modulation of neuronal T-type Ca2+channels by photoinactivation of intracellular guanosine 5-O-(3-thio) trisphosphate. Neuroscience 38: 285-294.

    Google Scholar 

  32. Scholz, K. P. and Miller, R. J. 1991. GABAB receptor-mediated inhibition of Ca2+currents and synaptic transmission in cultured rat hippocampal neurones. J. Physiol. 444:669-686.

    Google Scholar 

  33. Cox, D. H. and Dunlap, K. 1992. Pharmacological discrimination of N-type from L-type Ca2+current and its selective modulation by transmitters. J. Neurosci. 12:906-914.

    Google Scholar 

  34. Maguire, G., Maple, B, Lukasiewicz P., and Werblin, F. 1989. γ-Aminobutyrate type B receptor modulation of L-type Ca2+channel current at bipolar cell terminals in the retina of the tiger salamander. Proc. Natl. Acad. Sci. USA 86:10144-10147.

    Google Scholar 

  35. Heidelberger, R. and Matthews, G. 1991. Inhibition of calcium influx and calcium current by γ-aminobutyric acid in single synaptic terminals. Proc. Natl. Acad. Sci. USA 88:7135-7139.

    Google Scholar 

  36. Mintz, I. M. and Bean, B. P. 1993. GABAB receptor inhibition of P-type Ca2+channels in central neurons. Neuron 10:889-898.

    Google Scholar 

  37. Connor, J. A., Tseng, H. Y., and Hockberger, P. E. 1987. Depolarization-and transmitter-induced changes in intracellular Ca2+of rat cerebellar granule cells in explant cultures. J. Neurosci. 7:1384-1400.

    Google Scholar 

  38. de Erausquin, G., Brooker, G., Costa, E., and Wojcik, W. J. 1992. Stimulation of high affinity γ-aminobutyric acidB receptors potentiates the depolarization-induced increase of intraneuronal ionized calcium content in cerebellar granule neurons. Mol. Pharmacol. 42:407-414.

    Google Scholar 

  39. Ito, Y., Ishige, K., Zaitsu, E., Anzai, K., and Fukuda, H. 1995. γ-Hydroxybutyric acid increases intracellular Ca2+concentration and nuclear cyclic AMP-responsive element-and activator protein 1 DNA-binding activities through GABAB receptor in cultured cerebellar granule cells. J. Neurochem. 65:75-83.

    Google Scholar 

  40. Gray, J. A. and Green, A. R. 1987. GABAB receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytriptamine from mouse frontal cortex. Br. J. Pharmacol. 91:517-522.

    Google Scholar 

  41. Conzelmann, U., Meyer, D. K., and Sperk, G. 1986. Stimulation of receptors of γ-aminobutyric acid modulates the release of cholecystokinin-like immunoreactivity from slices of rat neostriatum. Br. J. Pharmacol. 89:845-852.

    Google Scholar 

  42. Bonanno, G., Gemignani, A., Fedele, E., Fontana, G., and Raiteri, M. 1991. γ-Aminobutyric acidB (GABAB) receptors mediate inhibition of somatostatin release from cerebrocortex nerve terminals. J. Pharmacol. Exp. Ther. 259:1153-1159.

    Google Scholar 

  43. Travagli, R. A., Ulivi, M., and Wojcik, W. J. 1991. γ-Aminobutyric acid-B receptors inhibit glutamate release from cerebellar cells: consequences of inhibiting cyclic AMP formation and calcium influx. J. Pharmacol. Exp. Ther. 258:903-909.

    Google Scholar 

  44. Bonanno, G. and Raiteri, M. 1992. Functional evidence for multiple γ-aminobutyric acidB receptor subtypes in the rat cerebral cortex. J. Phrmacol. Exp. Ther. 262:114-118.

    Google Scholar 

  45. Olpe, H. R. and Karlsson, G. 1990. The effects of baclofen and two GABAB-receptor antagonists on long-term potentiation. Naunyn-Schmiedeberg's Arch. Pharmacol. 342:194-197.

    Google Scholar 

  46. Mott, D. D. and Lewis, D. V. 1991. Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252: 1718-1720.

    Google Scholar 

  47. Davies, C. H., Starkey, S. J., Pozza, M. F., and Collingridge, G. L. 1991. GABAB autoreceptors regulate the induction of LTP. Nature 349:609-611.

    Google Scholar 

  48. Kuriyama, K., Kanmori, K., Taguchi, J., and Yoneda, Y. 1984. Stress-induced enhancement of suppression of [3H]GABA release from striatal slices by presynaptic autoreceptor. J. Neurochem. 42:943-950.

    Google Scholar 

  49. Pittaluga, A., Asaro, D., Pellegrini, G., and Raiteri, M. 1987. Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur. J. Pharmacol. 144:45-52.

    Google Scholar 

  50. Waldmeier, P. C., Wicki, P., Feldtrauer, J. J., and Baumann, P. A. 1988. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn-Schmideberg's Arch. Pharmacol. 337:289-295.

    Google Scholar 

  51. Raiteri, M., Pellegrini, G., Cantoni C., and Bonanno, G. 1989. A novel type of GABA receptor in rat spinal cord? Naunyn-Schmideberg's Arch. Pharmacol. 340:666-670.

    Google Scholar 

  52. Seabrook, G. R., Howson, W., and Lacey, M. G. 1991. Subpopulations of GABA-mediated synaptic potentials in slices of rat dorsal striatum are differentially modulated by presynaptic GABAB receptors. Brain Res. 562:332-334.

    Google Scholar 

  53. Bonanno, G. and Raiteri, M. 1993. γ-Aminobutyric acid (GABA) autoreceptors in rat cerebral coetex and spinal cord represent pharmacologically distinct subtypes of the GABAB receptor. J. Pharmacol. Exp. Ther. 265:765-770.

    Google Scholar 

  54. Bonanno, G. and Raiteri, M. 1993. Multiple GABAB receptors. Trends Pharmacol. Sci. 14:259-261.

    Google Scholar 

  55. Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. 1997. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 368:239-246.

    Google Scholar 

  56. Isomoto, S., Kaibara, M., Sakurai-Yamashita, Y., Nagayama, Y., Uezono, Y., Yano, K., and Taniyama, K. 1998. Cloning and tissue distribution of novel splice variants of the rat GABAB receptor. Biochem. Biophys. Res. Commun. 253:10-15.

    Google Scholar 

  57. Kaupmann, K., Schuler, V., Mosbacher, J., Bischoff, S., Bittiger, H., Heid, J., Froestl, W., Leonhard, S., Pfaff, T., Karschin, A., and Bettler, B. 1998. Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+channels. Proc. Natl. Acad. Sci. USA 95: 14991-14996.

    Google Scholar 

  58. Grifa, A., Totaro, A., Rommens, J. M., Carella, M., Roetto, A., Borgato, L., Zelante, L., and Gasparini, P. 1998. GABA (γ-amino-butyric acid) neurotransmission: Identification and fine mapping of the human GABAB receptor gene. Biochem. Biophys. Res. Commun. 250:240-245.

    Google Scholar 

  59. Couve, A., Filippov, A. K., Connolly, C. N., Bettler, B., Brown, D. A., and Moss, S. J. 1998. Intracellular retention of recombinant GABAB receptors. J. Biol. Chem. 273:26361-26367.

    Google Scholar 

  60. Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., Yao, W. J., Johnson, M., Gunwaldsen, C., Huang, L. Y., Tang, C., Shen, Q. R., Salon, J. A., Morse, K., Laz, T., Smith, K. E., Nagarathnam, D., Noble, S. A., Branchek, T. A., and Gerald, C. 1998. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396:674-679.

    Google Scholar 

  61. White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., Barnes, A. A., Emson, P., Foord, S. M., and Marshall, F. H. 1998. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679-682.

    Google Scholar 

  62. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., and Bettler, B. 1998. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683-687.

    Google Scholar 

  63. Kuner, R., Kohr, G., Grunewald, S., Eisenhardt, G., Bach, A., and Kornau, H. C. 1999. Role of heteromer formation in GABAB receptor function. Science 283:74-77.

    Google Scholar 

  64. Mohler, H. and Fritschy, J. M. 1999. GABAB receptors make it to the top-as dimers. Nature 20:87-89.

    Google Scholar 

  65. Marshall, F. H., Jones, K. A., Kaupmann, K., and Bettler, B. 1999. GABAB receptors-the first 7TM heterodimers. Nature 20:396-399.

    Google Scholar 

  66. Kammerer, R. A., Frank, S., Schulthess, T., Landwehr, R., Lustig, A., and Engel, J. 1999. Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil α-helices. Biochemistry 38:13263-13269.

    Google Scholar 

  67. Ng, G. Y. K., Clark, J., Coulombe, N., Ethier, N., Hebert, T. E., Sullivan, R., Kargman, S., Chateauneuf, A., Tsukamoto, N., McDonald, T., Whiting, P., Mezey, E., Johnson, M., Liu, Q., Kolalowski, Jr, L. F., Evans, J. F., Bonner, T. I., and O'Neill, G. P. 1999. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274:7607-7610.

    Google Scholar 

  68. Benke, D., Honer, M., Michel, C., Bettler, B., and Mohler, H. 1999. γ-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution J. Biol. Chem. 274:27323-27330.

    Google Scholar 

  69. Castelli, M. P., Ingianni, A., Stefanini, E., and Gessa, G. L. 1999. Distribution of GABAB receptor mRNAs in the rat brain and peripheral organs. Life Sci. 64:1321-1328.

    Google Scholar 

  70. Ong, J. and Kerr, D. I. 1990. GABA-receptors in peripheral tissues. Life Sci. 46:1489-1501.

    Google Scholar 

  71. Morris, S. J., Beatty, D. M., and Chronwall, B. M. 1998. GABA(B) Rla/Rlb-type receptor antisense deoyxnucleotide treatment of melanotropes blocks chronoic GABA(B) receptor inhibition of high voltage-activated Ca2+channels. J. Neurochem. 71:1329-1332.

    Google Scholar 

  72. Bowery, N. G., Hill, D. R., and Hudson, A. L. 1983. Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br. J. Pharmacol. 78:191-206.

    Google Scholar 

  73. Wise, A., Green, A., Main, M. J., Wilson, R., Fraser, and Marshall, F. H., 1999. Calcium sensing properties of the GABAB receptor. Neuropharmacology 38:1647-1656.

    Google Scholar 

  74. Franek, M., Pagano, A., Kaupmann, K., Bettler, B., Pin, J. P., and Blahos, J. 1999. The heteromeric GABA-B receptor recognizes G-protein αsubunit C-termini. Neuropharmacology 38: 1657-66.

    Google Scholar 

  75. Galvez, T., Parmentier, M. L., Joly, C., Malitschek, B., Kaupmann, K., Kuhn, R., Bittiger, H., Froestl, W., Bettler, B., and Pin, J. P. 1999. Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J. Biol. Chem. 274:13362-13369.

    Google Scholar 

  76. Malitschek, B., Schweizer, C., Keir, M., Heid, J., Froestl, W., Mosbacher, J., Kuhn, R., Henley, J., Joly, C., Pin, J. P., Kaupmann, K., and Bettler, B. 1999. The N-terminal domain of γ-aminobutyric acidB receptors is sufficient to specify agonist and antagonist binding. Mol. Pharmacol. 56:448-454.

    Google Scholar 

  77. Froestl, W., Bettler, B., Bittiger, H., Heid, J., Kaupmann, K., Mickel, S. J., and Strub, D. 1999. Ligands for the isolation of GABAB receptors. W. Froestl would like to dedicate this work to the first GABAB chemist, Cr Heinrich Keberle, on the occasion of his 77th birthday. Neuropharmacology 38: 1641-1646.

    Google Scholar 

  78. Bowery, N. G. and Enna, S. J. 2000. γ-Aminobutyric acidB receptors: First of the functional metabotropic heterodimers. J. Pharmacol. Exp. Ther. 292:2-7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuriyama, K., Hirouchi, M. & Kimura, H. Neurochemical and Molecular Pharmacological Aspects of the GABAB Receptor. Neurochem Res 25, 1233–1239 (2000). https://doi.org/10.1023/A:1007640027977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007640027977

Navigation