Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T16:37:35.471Z Has data issue: false hasContentIssue false

The Many Sides of Hemispheric Asymmetry: A Selective Review and Outlook

Published online by Cambridge University Press:  04 December 2017

Michael C. Corballis*
Affiliation:
School of Psychology, University of Auckland, Auckland, New Zealand
Isabelle S. Häberling
Affiliation:
Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, Zurich, Switzerland
*
Correspondence and reprint requests to: Michael C. Corballis, School of Psychology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. E-mail: m.corballis@auckland.ac.nz

Abstract

Hemispheric asymmetry is commonly viewed as a dual system, unique to humans, with the two sides of the human brain in complementary roles. To the contrary, modern research shows that cerebral and behavioral asymmetries are widespread in the animal kingdom, and that the concept of duality is an oversimplification. The brain has many networks serving different functions; these are differentially lateralized, and involve many genes. Unlike the asymmetries of the internal organs, brain asymmetry is variable, with a significant minority of the population showing reversed asymmetries or the absence of asymmetry. This variability may underlie the divisions of labor and the specializations that sustain social life. (JINS, 2017, 23, 710–718)

Type
Section 1 – Brain Systems and Assessment
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afzelius, B.A. (1976). A human syndrome caused by immotile cilia. Science, 193, 317319.CrossRefGoogle ScholarPubMed
Alcock, K.J., Passingham, R.E., Watkins, K.E., & Vargha-Khadem, F. (2000). Oral dyspraxia in inherited speech and language impairment. Brain & Language, 75, 1733.Google Scholar
American Heritage Dictionary of the English Language, 4th edition (2008). New York: Houghton Mifflin.Google Scholar
Andrew, R.J. (2002). Origins and evolution of lateralization. In L.J. Rogers & A.J. Andrew (Eds.), Comparative vertebrate lateralization (pp. 7093). Cambridge: Cambridge University Press.Google Scholar
Annett, M. (2002). Handedness and brain asymmetry: The right shift theory. Hove, East Sussex, UK: Psychology Press.Google Scholar
Arning, L., Ocklenburg, S., Schulz, S., Ness, V., Gerding, W.M., Hengstler, J.G., & Beste, C. (2013). PCSK6VNTR polymorphism is associated with degree of handedness but not direction of handedness. PLoS One, 8: e67251. http://dx.doi:10.1371/journal.pone.0067251 CrossRefGoogle Scholar
Badzakova-Trajkov, G., Häberling, I.S., & Corballis, M.C. (2010). Cerebral asymmetries in monozygotic twins: An fMRI study. Neuropsychologia, 48, 30863093. http://doi:10.1016/j.neuropsychologia.2010.06.020 Google Scholar
Badzakova-Trajkov, G., Häberling, I.S., & Corballis, M.C. (2011). Magical ideation, creativity, handedness, and cerebral asymmetries: A combined behavioural and fMRI study. Neuropsychologia, 40, 28962903. http://doi:10.1016/j.neuropsychologia.2011.06.016 Google Scholar
Badzakova-Trajkov, G., Häberling, I.S., Roberts, R.P., & Corballis, M.C. (2010). Cerebral asymmetries: Complementary and independent processes. PLoS One, 5(3), e9682. http://doi:10.1371/journal.pone.0009682 Google Scholar
Barnett, K.J., & Corballis, M.C. (2002). Ambidexterity and magical ideation. Laterality, 7, 7584. http://dx.doi:10.1080/13576500143000131 Google Scholar
Bauer, R.H. (1993). Lateralization of neural control for vocalization by the frog (Rana pipiens). Psychobiology, 21, 243248.Google Scholar
Bogen, J.E. (1969). The other side of the brain II: An appositional mind. Bulletin of the Los Angeles Neurological Society, 34, 135162.Google Scholar
Brandler, W.M., Morris, A.P., Evans, D.M., Scerri, T.S., Kemp, J.P., Timpson, N.J., & Paracchini, S. (2013). Common variants in left/right asymmetry genes and pathways are associated with relative hand skill. PLoS Genetics, 9, e1003751. http://dx.doi:10.1371/journal.pgen.1003751 CrossRefGoogle ScholarPubMed
Brandler, W.M., & Paracchini, S. (2014). The genetic relationship between handedness and neurodevelopmental disorders. Trends in Molecular Genetics, 20, 8390. http://dx.doi.org/10.1016/j.molmed.2013.10.008 Google Scholar
Broca, P. (1863). Localisations des fonctions cérébrales. Siège de la faculté du language articulé. Bulletin de la Société d’Anthropologie, 4, 200208.Google Scholar
Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network - Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. http://dx.doi:10.1196/annals.1440.011 Google Scholar
Cantalupo, C., & Hopkins, W.D. (2001). Asymmetric Broca’s area in great apes. Nature, 414, 505.Google Scholar
Caspers, S., Zilles, K., Laird, A.R., & Eickhoff, S.B. (2010). A metaanalysis of action observation and imitation in the human brain. Neuroimage, 50, 1148e1167. http://dx.doi:10.1016/j.neuroimage.2009.12.112 Google Scholar
Corballis, M.C. (1980). Laterality and myth. American Psychologist, 35, 254265.Google Scholar
Corballis, M.C. (1991). The lop-sided ape. New York: Oxford University Press.Google Scholar
Corballis, M.C. (2002). From hand to mouth: The origins of language. Princeton, NJ: Princeton University Press.Google Scholar
Corballis, M.C., Badzakova-Trajkov, G., & Häberling, I.S. (2012). Right hand, left brain: Genetic and evolutionary bases of cerebral asymmetries for language and manual action. WIRES Cognitive Science, 3, 117. http://doi:10.1002/wcs.158 CrossRefGoogle ScholarPubMed
Crow, T.J. (1998). Why cerebral asymmetry is the key to the origin of Homo sapiens: How to find the gene or eliminate the theory. Current Psychology of Cognition, 17, 12371277.Google Scholar
Crow, T.J., Crow, L.R., Done, D.J., & Leask, S. (1998). Relative hand skill predicts academic ability: Global deficits at the point of hemispheric indecision. Neuropsychologia, 36, 12751282.CrossRefGoogle ScholarPubMed
Dasgupta, A., & Amack, J.D. (2016). Cilia in vertebrate left–right patterning. Philosophical Transactions of the Royal Society . Series B, Biological Sciences, 371, 20150410. http://dx.doi.org/10.1098/rstb.2015.0410 CrossRefGoogle Scholar
DeLisi, L.E., Svetina, C., Razi, K., Shields, G., Wellman, N., & Crow, T.J. (2002). Hand preference and hand skill in families with schizophrenia. Laterality, 7, 321332. http://dx.DOI:10.1080/13576500143000294 Google Scholar
Douard, R., Feldman, A, Bargy, F., Loric, S., & Delmas, V. (2000). Anomalies of lateralization in man a case of total situs inversus. Surgerical and Radiologic Anatomy, 22, 293297.Google Scholar
Ehert, G. (1987). Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls. Nature, 325, 249251.Google Scholar
Enard, W., Przeworski, M., Fisher, S.E., Lai, C.S.L., Wiebe, V., Kitano, T., & Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418, 869871.Google Scholar
Francks, C., Maegawa, S., Lauren, J., Abrahams, B.S., Velayos-Baeza, A., Medland, S.E., & Monaco, A.P. (2007). LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Molecular Psychiatry, 12, 11291139. http://dx.doi:10.1038/sj.mp.4002053 Google Scholar
Gannon, P.J., Holloway, R.L., Broadfield, D.C., & Braun, A.R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s language area homolog. Science, 279, 220222.Google Scholar
Ghirlanda, S., & Vallortigara, G. (2004). The evolution of brain lateralization: A game-theoretical analysis of population structure. Proceedings of the Royal Society. Series B, Biological Sciences, 271, 853857. http://dx.doi:10.1098/rspb.2003.2669 Google Scholar
Giljov, A., Karenina, K., & Malashichev, Y. (2012). Does bipedality predict the group-level manual laterality in mammals? PLoS One, 7, e51583. http://dx.doi:10.1371/journal.pone.0051583 Google Scholar
Giljov, A., Karenina, K., Ingram, J., & Malashichev, Y. (2015). Parallel emergence of true handedness in the evolution of marsupials and placentals. Current Biology, 25, 18781884. http://dx.doi.org/10.1016/j.cub.2015.05.043 Google Scholar
Häberling, I.S., Corballis, P.M., & Corballis, M.C. (2016). Language, gesture, and handedness: Evidence for independent lateralized networks. Cortex, 82, 7285. http://dx.doi.org/10.1016/j.cortex.2016.06.003 0010-9452 Google Scholar
Häberling, I.S., Steinemann, A., & Corballis, M.C. (2016). Cerebral asymmetry for language: Comparing production with comprehension. Neuropsychologia, 80, 1723. http://dx.doi.org/10.1016/j.neuropsychologia.2015.11.002 Google Scholar
Heilman, K.M., & van den Abell, T. (1980). Right hemisphere dominance for attention: The mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30, 327330.Google Scholar
Hewes, G.W. (1973). Primate communication and the gestural origins of language. Current Anthropology, 14, 524.Google Scholar
Hopkins, W.D., Phillips, K.A., Bania, A., Calcutt, S.E., Gardner, M., Russell, J., & Schapiro, S.J. (2011). Hand preferences for coordinated bimanual actions in 777 great apes: Implications for the evolution of handedness in hominins. Journal of Human Evolution, 60, 650–611. http://dx.doi:10.1016/j.jhevol.2010.12.008 Google Scholar
Jackson, J.H. (1864). Clinical remarks on cases of defects of expression (by words, writing, signs, etc) in diseases of the nervous system. Lancet, 2, 604.Google Scholar
Kauffman, P.R. (2016). Might hallucinations have social utility? A proposal for scientific study. Journal of Nervous & Mental Disease, 204, 702712. http://dx.doi:0.1097/nmd.0000000000000542 Google Scholar
Kebir, O., & Joober, R. (2011). Neuropsychological endophenotypes in attention-deficit/hyperactivity disorder: A review of genetic association studies. European Archives of Psychiatry & Clinical Neuroscience, 261, 583594.Google Scholar
Kennedy, D.N., O’Craven, K.M., Ticho, B.S., Goldstein, A.M., Makris, N., & Henson, J.W. (1999). Structural and functional brain asymmetries in human situs inversus totalis. Neurology, 53, 12601265.Google Scholar
Liégeois, F., Baldeweg, T., Connelly, A., Gadian, D.G., Mishkin, M., & Vargha-Khadem, F. (2003). Language fMRI abnormalities associated with FOXP2 gene mutation. Nature Neuroscience, 6, 12301237. http://dx.doi:10.1098/rspb.2003.2669 Google Scholar
Lindell, A.K. (2011). Lateral thinkers are not so laterally minded: Hemispheric asymmetry, interaction, and creativity. Laterality, 16, 479498. http://dx.doi.org/10.1080/1357650X.2010.497813 Google Scholar
Lindell, A.K. (2013). Continuities in emotion lateralization in human and nonhuman primates. Frontiers in Human Neuroscience, 7, 464. http://dx.doi:0.3389/fnhum.2013.00464 CrossRefGoogle Scholar
Liu, H., Stufflebeam, S.M., Sepulcre, J., Hedden, T., & Buckner, R. (2009). Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors. Proceedings of the National Academy of Sciences of the United States of America, 106, 2049920503. http://dx.doi.10.1073.pnas.0908073106 Google Scholar
Ludwig, K.U., Mattheisen, M., Muhleisen, T.W., Roeske, D., Schmal, C., Breuer, R., & Cichon, S. (2009). Supporting evidence for LRRMT1 imprinting in schizophrenia. Molecular Psychiatry, 14, 743745. http://dx.doi:10.1038/mp.2009.28 Google Scholar
Luys, J.B. (1881). Recherches nouvelles sur les hémiplégies émotives. Encéphale , 1, 644646.Google Scholar
MacNeilage, P.F., Studdert-Kennedy, M.G., & Lindblom, B. (1987). Primate handedness reconsidered. Behavioral & Brain Sciences, 10, 247303.Google Scholar
Matsumoto, T., Kuriya, N., Akagi, T., Ohbu, K., Toyoda, O., Morita, J., & Kato, H. (1997). Handedness and laterality of the viscera. Neurology, 49, 1751.Google Scholar
Mazoyer, B., Zago, L., Jobard, G., Crivello, F., Joliot, M., Perchey, G., & Tzourio-Mazoyer, N. (2014). Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness. PLos One, 9(6), e101165.Google Scholar
McGilchrist, I. (2009). The master and his emissary: The divided brain and the making of the western world. New Haven, CT: Yale University Press.Google Scholar
McManus, C. (2002). Right hand, left hand: The origins of asymmetry of brains, bodies, atoms and cultures. Cambridge, MA: Harvard University Press.Google Scholar
McManus, I.C., & Bryden, M.P. (1992). The genetics of handedness, cerebral dominance and lateralization. In I. Rapin & S.J. Segalowitz (Eds.), Handbook of neuropsychology, Vol. 6: Developmental neuropsychology, Part 1 (pp. 115144). Amsterdam: Elsevier.Google Scholar
McManus, I.C., Davison, A., & Armour, J.A.L. (2009). Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies. Annals of the New York Academy of Sciences, 1288, 4858. http://dx.doi:10.1111/nyas.12102 Google Scholar
Medland, S., Duffy, D.L., Wright, M.J., Geffen, G.M., Hay, D.A, Levy, F., & Boomsma, D.I. (2009). Genetic influences on handedness: Data from 25,732 Australian and Dutch twin families. Neuropsychologia, 47, 330337. http://dx.doi:10.1016/j.neuropsychologia.2008.09.005 Google Scholar
Meguerditchian, A., Vauclair, J., & Hopkins, W.D. (2013). On the origins of human handedness and language: A comparative review of hand preferences for bimanual coordinated actions and gestural communication in nonhuman primates. Developmental Psychobiology, 55, 637650. http://dx.doi:10.1002/dev.21150 Google Scholar
Needham, R. (1973). Right and left: Essays on dual symbolic classification. Chicago, IL: University of Chicago Press.Google Scholar
Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., & Beste, C. (2013a). Cholecystokinin A receptor (CCKAR) gene variation is associated with language lateralization. PLoS One, 8, e53643. http://dx.doi.org/10.1371/journal.pone.0053643 Google Scholar
Ocklenburg, S., Arning, L., Gerding, W.M., Epplen, J.T., Güntürkün, O., & Beste, C. (2013b). FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain & Language, 126, 279284. http://dx.doi.org/10.1016/j.bandl.2013.07.001 Google Scholar
Ogden, J.A. (1985). Antero-posterior interhemispheric differences in the loci of lesions producing visual hemineglect. Brain & Cognition, 4, 5975.Google Scholar
Ornstein, R.E. (1972). The psychology of consciousness. San Francisco: Freeman.Google Scholar
Orr, K.G., Cannon, M., Gilvarry, C.M., Jones, P.B., & Murray, R.M. (1999). Schizophrenic patients and their first-degree relatives show an excess of mixed-handedness. Schizophrenia Research, 39, 167176.Google Scholar
Orton, S.T. (1937). Reading, writing, and speech problems in children. New York: W.W. Norton & Co. Ltd.Google Scholar
Pinel, P., Fauchereau, F., Moreno, A., Barbot, A., Lathrop, M., Zelenika, D., & Dehaene, S. (2012). Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. Journal of Neuroscience, 32, 817825. http://dx.doi:10.1523/jneurosci.5996-10.2012 Google Scholar
Porac, C., Rees, L., & Buller, T. (1990). Switching hands: A place for left hand use in a right hand world. In S. Coren (Ed.), Left-handedness: Behavioral implications and anomalies (pp. 259290). Amsterdam: Elsevier Science.Google Scholar
Power, R.A., Steinberg, S., Bjornsdottir, G., Rietveld, C.A., Abdellaoui, A., Nivard, M.M., & Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953955. http://dx.doi:10.1038/nn.4040 Google Scholar
Rhodes, G., & Zebrowitz, L.A. (Eds.), (2002). Facial attractiveness. London: Ablex.Google Scholar
Rizzolatti, G., & Arbib, M.A. (1998). Language within our grasp. Trends in Neurosciences, 21, 188e194.Google Scholar
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264e274. http://dx.doi:10.1038/nrn2805 Google Scholar
Rodriguez, A., Kaakinen, M., Moilanen, I., Taanila, A., McGough, J.L., & Jarvelin, M-R. (2010). Mixed-handedness is linked to mental health problems in children and adolescents. Pediatrics, 125, e340e348. http://dx.doi:10.1542/peds.2009-1165 Google Scholar
Rodriguez, A., & Waldenstrom, U. (2008). Fetal origins of child non-right-handedness and mental health. Journal of Child Psychology & Psychiatry, 49, 967976. http://dx.doi:10.1111/j.1469-7610.2008.01923.x Google Scholar
Rogers, L.J., & Kaplan, G. (1996). Hand preferences and other lateral biases in rehabilitated orang-utans. Pongo pygmaeus. Animal Behaviour, 51, 1325.Google Scholar
Rogers, L.J., Vallortigara, G., & Andrew, R.J. (2013). Divided brains: The biology and behavior of brain asymmetries. Cambridge, UK: Cambridge University Press.Google Scholar
Scerri, T.S., Brandler, W.M., Paracchini, S., Morris, A.P., Ring, S.M., Richardson, A.J., & Monaco, A.P. (2011). PCSK6 is associated with handedness in individuals with dyslexia. Human Molecular Genetics, 20, 608614. http://dx.doi:10.1093/hmg/ddq475 Google Scholar
Shobe, E.R., Ross, N.M., & Fleck, J.I. (2009). Influence of handedness and bilateral eye movements on creativity. Brain & Cognition, 71, 204214. http://dx.doi.org/10.1080/1357650X.2015.1089879 Google Scholar
Shore, R., Covill, L, Pettigrew, K.A., Brandler, W.M., Diaz, R., Xu, Y., & Paracchini, S. (2016). The handedness-associated PCSK6 locus spans an intronic promoter regulating novel transcripts. Human Molecular Genetics, 25, 17711779. http://dx.doi:10.1093/hmg/ddw047 Google Scholar
Somers, M., Sommer, I.E., Boks, M.P., & Kahn, R.S. (2009). Hand-preference and population schizotypy. Schizophrenia Research, 108, 2532. http://dx.doi:10.1016/j.schres.2008.11.010 Google Scholar
Sperry, R.W. (1982). Some effects of disconnecting the cerebral hemisphere. Science, 217, 12231227.Google Scholar
Szathmáry, E. (2015). Toward major evolutionary transitions theory 2.0. Proceedings of the National Academy of Sciences of the United States of America, 102, 1010410111. http://dx.doi/10.1073/pnas.1421398112 Google Scholar
Thornhill, R., & Gangestad, S.W. (1994). Human fluctuating asymmetry and sexual behavior. Human Nature, 4, 297302.Google Scholar
Torgersen, J. (1950). Situs inversus, asymmetry, and twinning. American Journal of Human Genetics, 2, 361370.Google Scholar
Tsuang, H.-C., Chen, W.J., Kuo, S.-Y., & Hsiao, P.-C. (2013). The cross-cultural nature of the relationship between schizotypy and mixed handedness. Laterality, 18, 476490. http://dx.doi:10.1080/1357650x.2012.720985 Google Scholar
Wernicke, C. (1874). Der Aphasische Symptomencomplex. Eine psychologische Studie auf anatomische Basis. Breslau: Cohn and Wiegert.Google Scholar
Whitaker, H.A. (1982). Dichotomania: An essay on our left and right brains. Journal of Visual Verbal Languaging, 2, 713.Google Scholar