Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T03:13:00.588Z Has data issue: false hasContentIssue false

Neural Correlates of Cognitive Fatigue: Cortico-Striatal Circuitry and Effort–Reward Imbalance

Published online by Cambridge University Press:  10 July 2013

Ekaterina Dobryakova*
Affiliation:
Kessler Foundation Research Center, West Orange, New Jersey Rutgers University, Biomedical and Health Sciences, Newark, New Jersey
John DeLuca
Affiliation:
Kessler Foundation Research Center, West Orange, New Jersey Rutgers University, Biomedical and Health Sciences, Newark, New Jersey
Helen M. Genova
Affiliation:
Kessler Foundation Research Center, West Orange, New Jersey Rutgers University, Biomedical and Health Sciences, Newark, New Jersey
Glenn R. Wylie
Affiliation:
Kessler Foundation Research Center, West Orange, New Jersey Rutgers University, Biomedical and Health Sciences, Newark, New Jersey War Related Illness & Injury Study Center, Department of Veteran's Affairs, East Orange, New Jersey
*
Correspondence and reprint requests to: Ekaterina Dobryakova, Kessler Foundation Research Center, 300 Executive Drive, Suite 70, West Orange, NJ, USA. E-mail: edobryakova@kesslerfoundation.org

Abstract

Recently, there has been renewed interest in the study of cognitive fatigue. It is known that fatigue is one of the most disabling symptoms in numerous neurological populations, including stroke, multiple sclerosis, Parkinson's disease, and traumatic brain injury. Behavioral studies of cognitive fatigue are hampered by lack of correlation of self-report measures with objective performance. Neuroimaging studies provide new insight about cognitive fatigue and its neural correlates. Impairment within the cortico-striatal network, involved in effort–reward calculation, has been suggested to be critically related to fatigue. The current review surveys the recent neuroimaging literature, and suggests promising avenues for future research. (JINS, 2013, 19, 1–5)

Type
Short Review
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boksem, M.A., Meijman, T.F., Lorist, M.M. (2005). Effects of mental fatigue on attention: an ERP study. Cognitive Brain Research, 25(1), 107116.CrossRefGoogle ScholarPubMed
Boksem, M.A., Meijman, T.F., Lorist, M.M. (2006). Mental fatigue, motivation and action monitoring. Biological Psychology, 72(2), 123132. doi:10.1016/j.biopsycho.2005.08.007CrossRefGoogle ScholarPubMed
Boksem, M.A., Tops, M. (2008). Mental fatigue: Costs and benefits. Brain Research Reviews, 59(1), 125139. doi:10.1016/j.brainresrev.2008.07.001CrossRefGoogle ScholarPubMed
Bonelli, R.M., Cummings, J.L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141151. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3181854&tool=pmcentrez&rendertype=abstractCrossRefGoogle ScholarPubMed
Botvinick, M.M., Rosen, Z.B. (2009). Anticipation of cognitive demand during decision-making. Psychological Research-Psychologische Forschung, 73(6), 835842.CrossRefGoogle ScholarPubMed
Capuron, L., Pagnoni, G., Drake, D.F., Woolwine, B.J., Spivey, J.R., Crowe, R.J., Miller, A.H. (2012). Dopaminergic mechanisms of reduced Basal Ganglia responses to hedonic reward during interferon alfa administration. Archives of General Psychiatry, 69(10), 10441053. doi:10.1001/archgenpsychiatry.2011.2094CrossRefGoogle ScholarPubMed
Carver, C.S., White, T.L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319333. doi:10.1037/0022-3514.67.2.319CrossRefGoogle Scholar
Chaudhuri, A., Behan, P.O. (2000). Fatigue and basal ganglia. Journal of the Neurological Sciences, 179(S 1-2), 3442. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11054483CrossRefGoogle ScholarPubMed
Chaudhuri, A., Behan, P.O. (2004). Fatigue in neurological disorders. Lancet, 363(9413), 978988. doi:10.1016/S0140-6736(04)15794-2CrossRefGoogle ScholarPubMed
Claros-Salinas, D., Dittmer, N., Neumann, M., Sehle, A., Spiteri, S., Willmes, K., Schoenfeld, M.A., Dettmers, C. (2013). Induction of cognitive fatigue in MS patients through cognitive and physical load. Neuropsychological Rehabilitation, 23(2), 182201. doi:10.1080/09602011.2012.726925CrossRefGoogle ScholarPubMed
DeLuca, J. (2005). Fatigue, cognition, and mental effort. In: J. DeLuca (Ed.), Fatigue as a window to the brain. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
DeLuca, J., Genova, H.M., Hillary, F.G., Wylie, G. (2008). Neural correlates of cognitive fatigue in multiple sclerosis using functional MRI. Journal of the Neurological Sciences, 270(1-2), 2839. doi:10.1016/j.jns.2008.01.018CrossRefGoogle ScholarPubMed
Haber, S.N., Fudge, J.L., McFarland, N.R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. Journal of Neuroscience, 20(6), 23692382.CrossRefGoogle ScholarPubMed
Haber, S.N., Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi:10.1038/npp.2009.129CrossRefGoogle ScholarPubMed
Hollerman, J.R., Tremblay, L., Schultz, W. (1998). Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80(2), 947963.CrossRefGoogle ScholarPubMed
Kluger, B.M., Krupp, L.B., Enoka, R.M. (2013). Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology, 80, 409416.CrossRefGoogle ScholarPubMed
Kohl, A.D., Wylie, G.R., Genova, H.M., Hillary, F.G., DeLuca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Injury, 23, 420432. doi:10.1080/02699050902788519CrossRefGoogle ScholarPubMed
Leocani, L., Colombo, B., Comi, G. (2008). Physiopathology of fatigue in multiple sclerosis. Neurological Sciences, 29(Suppl 2), S241S243. doi:10.1007/s10072-008-0950-1CrossRefGoogle ScholarPubMed
Lorist, M.M., Bezdan, E., Ten Caat, M., Span, M.M., Roerdink, J.B., Maurits, N.M. (2009). The influence of mental fatigue and motivation on neural network dynamics; an EEG coherence study. Brain Research, 1270, 95106. doi:10.1016/j.brainres.2009.03.015CrossRefGoogle ScholarPubMed
Middleton, F.A., Strick, P.L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31(2-3), 236250.CrossRefGoogle ScholarPubMed
Moeller, S.J., Tomasi, D., Honorio, J., Volkow, N.D., Goldstein, R.Z. (2012). Dopaminergic involvement during mental fatigue in health and cocaine addiction. Translational Psychiatry 2(10), e176. doi:10.1038/tp.2012.110.CrossRefGoogle ScholarPubMed
O'Doherty, J. (2011). Contributions of the ventromedial prefrontal cortex to goal-directed action selection. In G. Schoenbaum, J.A. Gottfried, E.A. Murray, & S.J. Ramus (Eds), Critical contributions of the orbitofrontal cortex to behavior (Vol. 1239, pp. 118129). Oxford: Blackwell Science Publishers. doi:10.1111/j.1749-6632.2011.06290.xGoogle Scholar
Pardini, M., Bonzano, L., Mancardi, G.L., Roccatagliata, L. (2010). Frontal networks play a role in fatigue perception in multiple sclerosis. Behavioral Neuroscience, 124(3), 329336. doi:10.1037/a0019585CrossRefGoogle ScholarPubMed
Pardini, M., Capello, E., Krueger, F., Mancardi, G., Uccelli, A. (2012). Reward responsiveness and fatigue in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England). doi: 10.1177/1352458512451509Google ScholarPubMed
Pardini, M., Krueger, F., Raymont, V., Grafman, J. (2010). Ventromedial prefrontal cortex modulates fatigue after penetrating traumatic brain injury. Neurology, 74(9), 749754. doi:10.1212/WNL.0b013e3181d25b6bCrossRefGoogle ScholarPubMed
Roelcke, U., Kappos, L., Lechner-Scott, J., Brunnschweiler, H., Huber, S., Ammann, W., Leenders, K.L. (1997). Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: Tomography study. Neurology, 48(6), 15661571.CrossRefGoogle ScholarPubMed
Salamone, J.D., Correa, M., Mingote, S., Weber, S.M. (2003). Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: Implications for studies of natural motivation, psychiatry, and drug abuse. Journal of Pharmacology and Experimental Therapeutics, 305(1), 18. doi:10.1124/jpet.102.035063CrossRefGoogle ScholarPubMed
Strober, L.B., DeLuca, J. (2013). Fatigue: Its influence on cognition and on assessment. In P. Arnett (Ed.), Secondary influences on neuropsychological test performance. New York: Oxford University Press.Google Scholar
Tang, W.K., Chen, Y.K., Mok, V., Chu, W.C., Ungvari, G.S., Ahuja, A.T., Wong, K.S. (2010). Acute basal ganglia infarcts in poststroke fatigue: An MRI study. Journal of Neurology, 257(2), 178182. doi:10.1007/s00415-009-5284-2CrossRefGoogle ScholarPubMed
Tang, W.K., Liang, H.J., Chen, Y.K., Chu, W.C., Abrigo, J., Mok, V.C., Wong, K.S. (2012). Poststroke fatigue is associated with caudate infarcts. Journal of the Neurological Sciences. doi:10.1016/j.jns.2012.10.022Google ScholarPubMed
Volkow, N.D., Fowler, J.S., Wang, G.-J., Swanson, J.M. (2004). Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Molecular Psychiatry, 9(6), 557569. doi:10.1038/sj.mp.4001507CrossRefGoogle ScholarPubMed
Walton, M.E., Bannerman, D.M., Alterescu, K., Rushworth, M.F.S. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. The Journal of Neuroscience, 23(16), 64756479. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12878688CrossRefGoogle ScholarPubMed
Wylie, G., Genova, H.M., DeLuca, J., Chiaravalloti, N.D. 2012. An investigation of cognitive fatigue in traumatic brain injury using functional magnetic resonance imaging. Montreal, Canada.Google Scholar