Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-03T21:23:44.064Z Has data issue: false hasContentIssue false

Brain–behavior relationships in the experience and regulation of negative emotion in healthy children: Implications for risk for childhood depression

Published online by Cambridge University Press:  25 November 2014

David Pagliaccio*
Affiliation:
Washington University in St. Louis
Joan L. Luby
Affiliation:
Washington University in St. Louis
Katherine R. Luking
Affiliation:
Washington University in St. Louis
Andrew C. Belden
Affiliation:
Washington University in St. Louis
Deanna M. Barch
Affiliation:
Washington University in St. Louis
*
Address correspondence and reprint requests to: David Pagliaccio, Program in Neuroscience, Washington University in St. Louis, Campus Box 1125, One Brookings Drive, St. Louis, MO 63130; E-mail: david.pagliaccio@wustl.edu or david.pagliaccio@gmail.com.

Abstract

Structural and functional alterations in a variety of brain regions have been associated with depression and risk for depression across the life span. A majority of these regions are associated with emotion reactivity and/or regulation. However, it is generally unclear what mechanistic role these alterations play in the etiology of depression. A first step toward understanding this is to characterize the relationships between variation in brain structure/function and individual differences in depression severity and related processes, particularly emotion regulation. To this end, the current study examines how brain structure and function predict concurrent and longitudinal measures of depression symptomology and emotion regulation skills in psychiatrically healthy school-age children (N = 60). Specifically, we found that smaller hippocampus volumes and greater responses to sad faces in emotion reactivity regions predict increased depressive symptoms at the time of scan, whereas larger amygdala volumes, smaller insula volumes, and greater responses in emotion reactivity regions predict decreased emotion regulation skills. In addition, larger insula volumes predict improvements in emotion regulation skills even after accounting for emotion regulation at the time of scan. Understanding brain–behavior relationships in psychiatrically healthy samples, especially early in development, will help inform normative developmental trajectories and neural alterations in depression and other affective pathology.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M., & Edelbrock, C. (1991). Manual for the Child Behavior Checklist—Teacher's Report Form. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30, 217237.Google Scholar
Amico, F., Meisenzahl, E., Koutsouleris, N., Reiser, M., Möller, H.-J., & Frodl, T. (2011). Structural MRI correlates for vulnerability and resilience to major depressive disorder. Journal of Psychiatry and Neuroscience, 36, 1522.CrossRefGoogle ScholarPubMed
Andersen, S. L., & Teicher, M. H. (2004). Delayed effects of early stress on hippocampal development. Neuropsychopharmacology, 29, 19881993.Google Scholar
Anticevic, A., & Repovs, G. (2011). Emotion effects on attention, amygdala activation, and functional connectivity in schizophrenia. Schizophrenia Bulletin, 38, 967980.Google Scholar
Anticevic, A., Repovs, G., & Barch, D. M. (2010). Resisting emotional interference: Brain regions facilitating working memory performance during negative distraction. Cognitive, Affective, & Behavioral Neuroscience, 10, 159173.Google Scholar
Barch, D. M., Gaffrey, M. S., Botteron, K. N., Belden, A. C., & Luby, J. L. (2012). Functional brain activation to emotionally valenced faces in school-aged children with a history of preschool-onset major depression. Biological Psychiatry, 72, 10351042.CrossRefGoogle ScholarPubMed
Beesdo, K., Lau, J., Guyer, A., McClure-Tone, E., Monk, C., Nelson, E., et al. (2009). Common and distinct amygdala-function perturbations in depressed vs. anxious adolescents. Archives of General Psychiatry, 66, 275.Google Scholar
Belden, A., Barch, D. M., Oakberg, T. J., April, L. M., Harms, M. P., Botteron, K. N., et al. (2014). Anterior insula volume and guilt: Neurobehavioral markers of recurrence after early childhood major depressive disorder. Manuscript submitted for publication.Google Scholar
Belden, A. C., Luby, J. L., Pagliaccio, D., & Barch, D. M. (2014). Neural activation associated with the cognitive emotion regulation of sadness in healthy children. Developmental Cognitive Neuroscience, 9C, 136147.CrossRefGoogle Scholar
Becerril, K. E., Repovs, G., & Barch, D. M. (2011). Error processing network dynamics in schizophrenia. NeuroImage, 54, 14951505.CrossRefGoogle ScholarPubMed
Birmaher, B., Ryan, N. D., Williamson, D. E., & Brent, D. A. (1996). Childhood and adolescent Depression: A review of the past 10 years: Part I. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 14271439.Google Scholar
Braver, T., Paxton, J., Locke, H., & Barch, D. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106, 7351.Google Scholar
Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., et al. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. NeuroImage, 23, 724738.CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., et al. (2013). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex. Advance online publication.Google ScholarPubMed
Burgund, E. D., Kang, H. C., Kelly, J. E., Buckner, R. L., Snyder, A. Z., Petersen, S. E., et al. (2002). The feasibility of a common stereotactic space for children and adults in fMRI studies of development. NeuroImage, 17, 184200.Google Scholar
Burke, H. M., Davis, M. C., Otte, C., & Mohr, D. C. (2005). Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology, 30, 846856.Google Scholar
Burke, K. C., Burke, J. D., Rae, D. S., & Regier, D. A. (1991). Comparing age at onset of major depression and other psychiatric disorders by birth cohorts in five US community populations. Archives of General Psychiatry, 48, 789795.Google Scholar
Caetano, S. C., Fonseca, M., Hatch, J. P., Olvera, R. L., Nicoletti, M., Hunter, K., et al. (2007). Medial temporal lobe abnormalities in pediatric unipolar depression. Neuroscience Letters, 427, 142147.Google Scholar
Campbell, S., & MacQueen, G. (2004). The role of the hippocampus in the pathophysiology of major depression. Journal of Psychiatry and Neuroscience, 29, 417426.Google ScholarPubMed
Canli, T., Cooney, R., Goldin, P., Shah, M., Sivers, H., Thomason, M., et al. (2005). Amygdala reactivity to emotional faces predicts improvement in major depression. NeuroReport, 16, 1267.Google Scholar
Carballedo, A., Lisiecka, D., Fagan, A., Saleh, K., Ferguson, Y., Connolly, G., et al. (2012). Early life adversity is associated with brain changes in subjects at family risk for depression. World Journal of Biological Psychiatry, 13, 569578.Google Scholar
Chen, M. C., Hamilton, J. P., & Gotlib, I. H. (2010). Decreased hippocampal volume in healthy girls at risk of depression. Archives of General Psychiatry, 67, 270276.Google Scholar
Cole, P., & Michel, M. (1994). The development of emotion regulation and dysregulation: A clinical perspective. Monographs of the Society for Research in Child Development, 59, 73100.Google Scholar
Connolly, C. G., Wu, J., Ho, T. C., Hoeft, F., Wolkowitz, O., Eisendrath, S., et al. (2013). Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biological Psychiatry, 74, 898907.Google Scholar
Dannlowski, U., Kugel, H., Huber, F., Stuhrmann, A., Redlich, R., Grotegerd, D., et al. (2012). Childhood maltreatment is associated with an automatic negative emotion processing bias in the amygdala. Human Brain Mapping, 11, 28992909.Google Scholar
Davidson, R., & Irwin, W. (1999). The functional neuroanatomy of emotion and affective style. Trends in Cognitive Sciences, 3, 1121.CrossRefGoogle ScholarPubMed
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968980.Google Scholar
Diekhof, E. K., Geier, K., Falkai, P., & Gruber, O. (2011). Fear is only as deep as the mind allows: A coordinate-based meta-analysis of neuroimaging studies on the regulation of negative affect. NeuroImage, 58, 275285.Google Scholar
Egger, H. L., Erkanli, A., Keeler, G., & Potts, E. (2006). Test–retest reliability of the Preschool Age Psychiatric Assessment (PAPA). Journal of the American Academy of Child & Adolescent Psychiatry, 45, 538549.Google Scholar
Fales, C., Barch, D., Rundle, M., Mintun, M., Snyder, A., Cohen, J., et al. (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry, 63, 377384.Google Scholar
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341355.Google Scholar
Fischl, B. B., Salat, D. H. D., van der Kouwe, A. J. W. A., Makris, N. N., Ségonne, F. F., Quinn, B. T. B., et al. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl. 1), S69S84.Google Scholar
Fitzgerald, P. B., Laird, A. R., Maller, J., & Daskalakis, Z. J. (2008). A meta-analytic study of changes in brain activation in depression. Human Brain Mapping, 29, 683695.Google Scholar
Frodl, T., Jäger, M., Smajstrlova, I., Born, C., Bottlender, R., Palladino, T., et al. (2008). Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: A 3-year prospective magnetic resonance imaging study. Journal of Psychiatry and Neuroscience, 33, 423430.Google Scholar
Fu, C. H. Y., Williams, S. C. R., Cleare, A. J., Brammer, M. J., Walsh, N. D., Kim, J., et al. (2004). Attenuation of the neural response to sad faces in major depression by antidepressant treatment: A prospective, event-related functional magnetic resonance imaging study. Archives of General Psychiatry, 61, 877889.Google Scholar
Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., et al. (2009). Functional atlas of emotional faces processing: A voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry and Neuroscience, 34, 418432.Google Scholar
Gabard-Durnam, L. J., Flannery, J., Goff, B., Gee, D. G., Humphreys, K. L., Telzer, E., et al. (2014). The development of human amygdala functional connectivity at rest from 4 to 23 years: A cross-sectional study. NeuroImage, 95, 193207.Google Scholar
Gaffrey, M. S., Barch, D. M., Singer, J., Shenoy, R., & Luby, J. L. (2013). Disrupted amygdala reactivity in depressed 4-to 6-year-old children. Journal of the American Academy of Child & Adolescent Psychiatry, 52, 737746.Google Scholar
Gaffrey, M. S., Luby, J. L., Belden, A. C., Hirshberg, J. S., Volsch, J., & Barch, D. M. (2011). Association between depression severity and amygdala reactivity during sad face viewing in depressed preschoolers: An fMRI study. Journal of Affective Disorders, 129, 364370.Google Scholar
Garnefski, N., & Kraaij, V. (2006). Relationships between cognitive emotion regulation strategies and depressive symptoms: A comparative study of five specific samples. Personality and Individual Differences, 40, 16591669.Google Scholar
Gotlib, I. H., Sivers, H., Gabrieli, J. D. E., Whitfield-Gabrieli, S., Goldin, P., Minor, K. L., et al. (2005). Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. NeuroReport, 16, 1731.Google Scholar
Green, J. G., McLaughlin, K. A., Berglund, P. A., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., et al. (2010). Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication: I. Associations with first onset of DSM-IV disorders. Archives of General Psychiatry, 67, 113123.Google Scholar
Greicius, M., Flores, B., Menon, V., Glover, G., Solvason, H., Kenna, H., et al. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62, 429437.Google Scholar
Groenewold, N. A., Opmeer, E. M., de Jonge, P., Aleman, A., & Costafreda, S. G. (2012). Emotional valence modulates brain functional abnormalities in depression: Evidence from a meta-analysis of fMRI studies. Neuroscience and Biobehavioral Reviews, 37, 152163.Google Scholar
Gu, X., Hof, P. R., Friston, K. J., & Fan, J. (2013). Anterior insular cortex and emotional awareness. Journal of Comparative Neurology, 521, 33713388.Google Scholar
Gur, R. C., Schroeder, L., Turner, T., McGrath, C., Chan, R. M., Turetsky, B. I., et al. (2002). Brain activation during facial emotion processing. NeuroImage, 16, 651662.Google Scholar
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., et al. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20, 15651582.Google Scholar
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 169, 693703.Google Scholar
Hastings, R. S. R., Parsey, R. V. R., Oquendo, M. A. M., Arango, V. V., & Mann, J. J. J. (2004). Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology, 29, 952959.Google Scholar
Heuser, I., Yassouridis, A., & Holsboer, F. (1994). The combined dexamethasone/CRH test: A refined laboratory test for psychiatric disorders. Journal of Psychiatric Research, 28, 341356.Google Scholar
Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic–pituitary–adrenocortical axis. Endocrine Reviews, 12, 118134.Google Scholar
Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences, 107, 88718876.Google Scholar
Joormann, J., & Gotlib, I. H. (2006). Is this happiness I see? Biases in the identification of emotional facial expressions in depression and social phobia. Journal of Abnormal Psychology, 115, 705714.Google Scholar
Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition and Emotion, 24, 281298.Google Scholar
Joormann, J., Talbot, L., & Gotlib, I. H. (2007). Biased processing of emotional information in girls at risk for depression. Journal of Abnormal Psychology, 116, 135143.CrossRefGoogle ScholarPubMed
Kang, H. C., Burgund, E. D., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2003). Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage, 19, 1628.Google Scholar
Kaufman, J., Martin, A., King, R., & Charney, D. (2001). Are child-, adolescent-, and adult-onset depression one and the same disorder? Biological Psychiatry, 49, 9801001.Google Scholar
Kessler, R., Berglund, P., & Demler, O. (2003). The epidemiology of major depressive disorder. Journal of the American Medical Association, 290, 19911992.Google Scholar
Kessler, R. C., & Magee, W. J. (2009). Childhood adversities and adult depression: Basic patterns of association in a US national survey. Psychological Medicine, 23, 679.Google Scholar
Koban, L., & Pourtois, G. (in press). Brain systems underlying the affective and social monitoring of actions: An integrative review. Neuroscience & Biobehavioral Reviews.Google Scholar
Kovacs, M. (1985). The Children's Depression Inventory (CDI). Psychopharmacology Bulletin, 21, 995998.Google Scholar
Lai, C. H., & Wu, Y. T. (2014). Frontal-insula gray matter deficits in first-episode medication-naïve patients with major depressive disorder. Journal of Affective Disorders, 160, 7479.Google Scholar
Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure and Function, 214, 579591.Google Scholar
Lange, C., & Irle, E. (1999). Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychological Medicine, 34, 10591064.Google Scholar
Lau, J. Y. F., Burt, M., Leibenluft, E., Pine, D. S., Rijsdijk, F., Shiffrin, N., et al. (2009). Individual differences in children's facial expression recognition ability: The role of nature and nurture. Developmental Neuropsychology, 34, 3751.Google Scholar
Liu, C.-H., Jing, B., Ma, X., Xu, P.-F., Zhang, Y., Li, F., et al. (2014). Voxel-based morphometry study of the insular cortex in female patients with current and remitted depression. Neuroscience, 262, 190199.Google Scholar
Luby, J., Belden, A., Botteron, K., Marrus, N., Harms, M. P., Babb, C., et al. (2013). The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatrics, 167, 11351142.Google Scholar
Luby, J. L., Heffelfinger, A., Koenig-McNaught, A. L., Brown, K., & Spitznagel, E. (2004). The Preschool Feelings Checklist: A brief and sensitive screening measure for depression in young children. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 708717.Google Scholar
Luby, J. L., Si, X., Belden, A., Tandon, M., & Spitznagel, E. (2009). Preschool depression: Homotypic continuity and course over 24 months. Archives of General Psychiatry, 66, 897.Google Scholar
Luking, K. R., Repovs, G., Belden, A. C., Gaffrey, M. S., Botteron, K. N., Luby, J. L., et al. (2011). Functional connectivity of the amygdala in early-childhood-onset depression. Journal of the American Academy of Child & Adolescent Psychiatry, 50, 10271041.Google Scholar
Lupien, S. J., Parent, S., Evans, A. C., Tremblay, R. E., Zelazo, P. D., Corbo, V., et al. (2011). Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proceedings of the National Academy of Sciences, 108, 1432414329.Google Scholar
MacMaster, F. P., & Kusumakar, V. (2004). Hippocampal volume in early onset depression. BMC Medicine, 2, 2.Google Scholar
MacMaster, F. P., Mirza, Y., Szeszko, P. R., Kmiecik, L. E., Easter, P. C., Taormina, S. P., et al. (2008). Amygdala and hippocampal volumes in familial early onset major depressive disorder. Biological Psychiatry, 63, 385390.Google Scholar
Matthews, S., Strigo, I., & Simmons, A. (2008). Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. Journal of Affective Disorders, 111, 1320.Google Scholar
Mayberg, H. S., Brannan, S. K., Tekell, J. L., Silva, J. A., Mahurin, R. K., McGinnis, S., et al. (2000). Regional metabolic effects of fluoxetine in major depression: Serial changes and relationship to clinical response. Biological Psychiatry, 48, 830843.Google Scholar
McRae, K., Gross, J. J., Weber, J., Robertson, E. R., Sokol-Hessner, P., Ray, R. D., et al. (2012). The development of emotion regulation: An fMRI study of cognitive reappraisal in children, adolescents and young adults. Social Cognitive and Affective Neuroscience, 7, 1122.Google Scholar
Monk, C. S., Klein, R. G., Telzer, E. H., Schroth, E. A., Mannuzza, S., Moulton, J. L., et al. (2008). Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. American Journal of Psychiatry, 165, 9098.Google Scholar
Monk, C. S., McClure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., et al. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. NeuroImage, 20, 420428.Google Scholar
Moore, W. E., Pfeifer, J. H., Masten, C. L., Mazziotta, J. C., Iacoboni, M., & Dapretto, M. (2012). Facing puberty: Associations between pubertal development and neural responses to affective facial displays. Social Cognitive and Affective Neuroscience, 7, 3543.Google Scholar
Morris, M. C., Rao, U., & Garber, J. (2012). Cortisol responses to psychosocial stress predict depression trajectories: Social–evaluative threat and prior depressive episodes as moderators. Journal of Affective Disorders, 143, 223230.Google Scholar
Ochsner, K., & Gross, J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242249.Google Scholar
Ochsner, K., Ray, R., Cooper, J., Robertson, E., Chopra, S., Gabrieli, J., et al. (2004). For better or for worse: Neural systems supporting the cognitive down-and up-regulation of negative emotion. NeuroImage, 23, 483499.Google Scholar
Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 12151229.Google Scholar
Ochsner, K. N., & Feldman Barrett, L. (2001). A multiprocess perspective on the neuroscience of emotion. In Mayne, T. J. & Bonanno, G. A. (Eds.), Emotion: Current issues and future directions (pp. 3881). New York: Guilford Press.Google Scholar
Ochsner, K. N., & Gross, J. J. (2007). The neural architecture of emotion regulation. In Gross, J. J. (Ed.), Handbook of emotion regulation (Vol. 1, pp. 87109). New York: Guilford Press.Google Scholar
Ochsner, K. N., & Gross, J. J. (2008). Cognitive emotion regulation insights from social cognitive and affective neuroscience. Current Directions in Psychological Science, 17, 153158.Google Scholar
Ochsner, K. N., & Phelps, E. (2007). Emerging perspectives on emotion–cognition interactions. Trends in Cognitive Sciences, 11, 317318.Google Scholar
Ochsner, K. N., Ray, R. R., Hughes, B., McRae, K., Cooper, J. C., Weber, J., et al. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20, 13221331.Google Scholar
Ojemann, J. G. J., Akbudak, E. E., Snyder, A. Z. A., McKinstry, R. C. R., Raichle, M. E. M., & Conturo, T. E. T. (1997). Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. NeuroImage, 6, 156167.Google Scholar
Ollinger, J. M., Shulman, G. L., & Corbetta, M. (2001). Separating processes within a trial in event-related functional MRI. NeuroImage, 13, 210217.Google Scholar
Pagliaccio, D., Luby, J., Gaffrey, M., Belden, A., Botteron, K., Gotlib, I. H., et al. (2011). Anomalous functional brain activation following negative mood induction in children with pre-school onset major depression. Developmental Cognitive Neuroscience, 2, 256267.Google Scholar
Pagliaccio, D., Luby, J. L., Gaffrey, M. S., Belden, A. C., Botteron, K. N., Harms, M. P., et al. (2013). Functional brain activation to emotional and nonemotional faces in healthy children: Evidence for developmentally undifferentiated amygdala function during the school-age period. Cognitive, Affective, & Behavioral Neuroscience, 13, 771789.Google Scholar
Park, H. D., & Tallon-Baudry, C. (2014). The neural subjective frame: From bodily signals to perceptual consciousness. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130208.Google Scholar
Peng, J., Liu, J., Nie, B., Li, Y., Shan, B., Wang, G., et al. (2011). Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study. European Journal of Radiology, 80, 395399.Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2013). Steps toward optimizing motion artifact removal in functional connectivity MRI: A reply to Carp. NeuroImage, 76, 439441.Google Scholar
Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2013). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage. Advance online publication.Google Scholar
Rao, U., Chen, L.-A., Bidesi, A. S., Shad, M. U., Thomas, M. A., & Hammen, C. L. (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biological Psychiatry, 67, 357364.Google Scholar
Roberson-Nay, R., McClure, E. B., Monk, C. S., Nelson, E. E., Guyer, A. E., Fromm, S. J., et al. (2006). Increased amygdala activity during successful memory encoding in adolescent major depressive disorder: An FMRI study. Biological Psychiatry, 60, 966973.Google Scholar
Rosso, I. M., Cintron, C. M., Steingard, R. J., Renshaw, P. F., Young, A. D., & Yurgelun-Todd, D. A. (2005). Amygdala and hippocampus volumes in pediatric major depression. Biological Psychiatry, 57, 2126.Google Scholar
Roy, A. K., Shehzad, Z., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Gotimer, K., et al. (2009). Functional connectivity of the human amygdala using resting state fMRI. NeuroImage, 45, 614626.Google Scholar
Saleh, K., Carballedo, A., Lisiecka, D., Fagan, A. J., Connolly, G., Boyle, G., et al. (2012). Impact of family history and depression on amygdala volume. Psychiatry Research, 203, 2430.Google Scholar
Sauder, C. L., Hajcak, G., Angstadt, M., & Phan, K. L. (2013). Test–retest reliability of amygdala response to emotional faces. Psychophysiology, 50, 11471156.Google Scholar
Sheline, Y. I., Gado, M. H., & Price, J. L. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. NeuroReport, 9, 20232028.Google Scholar
Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences, 107, 1102011025.Google Scholar
Sheline, Y. I., Sanghavi, M., Mintun, M. A., & Gado, M. H. (1999). Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. Journal of Neuroscience, 19, 50345043.Google Scholar
Siegle, G., Carter, C., & Thase, M. (2006). Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. American Journal of Psychiatry, 163, 735.Google Scholar
Siegle, G. J., Konecky, R. O., Thase, M. E., & Carter, C. S. (2003). Relationships between amygdala volume and activity during emotional information processing tasks in depressed and never-depressed individuals: An fMRI investigation. Annals of the New York Academy of Sciences, 985, 481484.CrossRefGoogle ScholarPubMed
Silk, J. S., Steinberg, L., & Morris, A. S. (2003). Adolescents' emotion regulation in daily life: Links to depressive symptoms and problem behavior. Child Development, 74, 18691880.Google Scholar
Silvers, J. A., McRae, K., Gabrieli, J. D. E., Gross, J. J., Remy, K. A., & Ochsner, K. N. (2012). Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion, 12, 12351247.Google Scholar
Stein, J. L., Wiedholz, L. M., Bassett, D. S., Weinberger, D. R., Zink, C. F., Mattay, V. S., et al. (2007). A validated network of effective amygdala connectivity. NeuroImage, 36, 736745.Google Scholar
Stein, M. B., Koverola, C., Hanna, C., Torchia, M. G., & McClarty, B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27, 951959.Google Scholar
Stuhrmann, A., Suslow, T., & Dannlowski, U. (2011). Facial emotion processing in major depression: A systematic review of neuroimaging findings. Biology of Mood and Anxiety Disorders, 1, 10.Google Scholar
Surguladze, S., Brammer, M. J., Keedwell, P., Giampietro, V., Young, A. W., Travis, M. J., et al. (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry, 57, 201209.Google Scholar
Surguladze, S. A., Brammer, M. J., Young, A. W., Andrew, C., Travis, M. J., Williams, S. C. R., et al. (2003). A preferential increase in the extrastriate response to signals of danger. NeuroImage, 19, 13171328.Google Scholar
Suzuki, H., Botteron, K. N., Luby, J. L., Belden, A. C., Gaffrey, M. S., Babb, C. M., et al. (2012). Structural–functional correlations between hippocampal volume and cortico-limbic emotional responses in depressed children. Cognitive, Affective, & Behavioral Neuroscience, 13, 135151.Google Scholar
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging. New York: Thieme.Google Scholar
Taylor, L., & Ingram, R. E. (1999). Cognitive reactivity and depressotypic information processing in children of depressed mothers. Journal of Abnormal Psychology, 108, 202210.Google Scholar
Thomas, K., Drevets, W., Whalen, P., Eccard, C., Dahl, R., Ryan, N., et al. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49, 309316.Google Scholar
Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., et al. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13, 4661.Google Scholar
Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., et al. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research: Neuroimaging, 168, 242249.Google Scholar
van der Plas, E. A. A., Boes, A. D., Wemmie, J. A., Tranel, D., & Nopoulos, P. (2010). Amygdala volume correlates positively with fearfulness in normal healthy girls. Social Cognitive and Affective Neuroscience, 5, 424431.Google Scholar
Van Eijndhoven, P., van Wingen, G., van Oijen, K., Rijpkema, M., Goraj, B., Verkes, J. R., et al. (2009). Amygdala volume marks the acute state in the early course of depression. Biological Psychiatry, 65, 812818.Google Scholar
Vassilopoulou, K., Papathanasiou, M., Michopoulos, I., Boufidou, F., Oulis, P., Kelekis, N., et al. (2012). A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: Melancholic versus psychotic depression. Journal of Affective Disorders 146, 197204.Google Scholar
Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: A meta-analysis of MRI studies. American Journal of Psychiatry, 161, 19571966.Google Scholar
Vink, M., Derks, J. M., Hoogendam, J. M., Hillegers, M., & Kahn, R. S. (2014). Functional differences in emotion processing during adolescence and early adulthood. NeuroImage, 91, 7076.Google Scholar
Westermann, R., Spies, K., Stahl, G., & Hesse, F. W. (1996). Relative effectiveness and validity of mood induction procedures: A meta-analysis. European Journal of Social Psychology, 26, 557580.Google Scholar
Whittle, S., Simmons, J. G., Dennison, M., Vijayakumar, N., Schwartz, O., Yap, M. B. H., et al. (2013). Positive parenting predicts the development of adolescent brain structure: A longitudinal study. Developmental Cognitive Neuroscience, 8, 717.Google Scholar
Williams, L. M., Phillips, M. L., Brammer, M. J., Skerrett, D., Lagopoulos, J., Rennie, C., et al. (2001). Arousal dissociates amygdala and hippocampal fear responses: Evidence from simultaneous fMRI and skin conductance recording. NeuroImage, 14, 10701079.Google Scholar
Woon, F. L., & Hedges, D. W. (2008). Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: A meta-analysis. Hippocampus, 18, 729736.Google Scholar
Yang, T. T., Simmons, A. N., Matthews, S. C., Tapert, S. F., Frank, G. K., Max, J. E., et al. (2010). Adolescents with major depression demonstrate increased amygdala activation. Journal of the American Academy of Child & Adolescent Psychiatry, 49, 4251.Google Scholar
Zeman, J., Shipman, K., & Penza-Clyve, S. (2001). Development and initial validation of the Children's Sadness Management Scale. Journal of Nonverbal Behavior, 25, 187205.Google Scholar