Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-27T00:03:15.529Z Has data issue: false hasContentIssue false

Interactions among catechol-O-methyltransferase genotype, parenting, and sex predict children's internalizing symptoms and inhibitory control: Evidence for differential susceptibility

Published online by Cambridge University Press:  27 August 2014

Michael J. Sulik
Affiliation:
Arizona State University
Nancy Eisenberg*
Affiliation:
Arizona State University
Tracy L. Spinrad
Affiliation:
Arizona State University
Kathryn Lemery-Chalfant
Affiliation:
Arizona State University
Gregory Swann
Affiliation:
Arizona State University
Kassondra M. Silva
Affiliation:
Arizona State University
Mark Reiser
Affiliation:
Arizona State University
Daryn A. Stover
Affiliation:
Arizona State University
Brian C. Verrelli
Affiliation:
Virginia Commonwealth University
*
Address correspondence and reprint requests to: Nancy Eisenberg, Department of Psychology, Arizona State University, Tempe, AZ 85287-1104; E-mail: Nancy.Eisenberg@asu.edu.

Abstract

We used sex, observed parenting quality at 18 months, and three variants of the catechol-O-methyltransferase gene (Val158Met [rs4680], intron1 [rs737865], and 3′-untranslated region [rs165599]) to predict mothers' reports of inhibitory and attentional control (assessed at 42, 54, 72, and 84 months) and internalizing symptoms (assessed at 24, 30, 42, 48, and 54 months) in a sample of 146 children (79 male). Although the pattern for all three variants was very similar, Val158Met explained more variance in both outcomes than did intron1, the 3′-untranslated region, or a haplotype that combined all three catechol-O-methyltransferase variants. In separate models, there were significant three-way interactions among each of the variants, parenting, and sex, predicting the intercepts of inhibitory control and internalizing symptoms. Results suggested that Val158Met indexes plasticity, although this effect was moderated by sex. Parenting was positively associated with inhibitory control for methionine–methionine boys and for valine–valine/valine–methionine girls, and was negatively associated with internalizing symptoms for methionine–methionine boys. Using the “regions of significance” technique, genetic differences in inhibitory control were found for children exposed to high-quality parenting, whereas genetic differences in internalizing were found for children exposed to low-quality parenting. These findings provide evidence in support of testing for differential susceptibility across multiple outcomes.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
Arnsten, A. F., & Pliszka, S. R. (2011). Catecholamine influences on prefrontal cortical function: Relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacology Biochemistry and Behavior, 99, 211216.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952.CrossRefGoogle ScholarPubMed
Barnett, J. H., Jones, P. B., Robbins, T. W., & Müller, U. (2007). Effects of the catechol-O-methyltransferase Val158Met polymorphism on executive function: A meta-analysis of the Wisconsin Card Sort Test in schizophrenia and healthy controls. Molecular Psychiatry, 12, 502509.CrossRefGoogle ScholarPubMed
Bayer, J. K., Sanson, A. V., & Hemphill, S. A. (2006). Parent influences on early childhood internalizing difficulties. Journal of Applied Developmental Psychology, 27, 542559.CrossRefGoogle Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-regulation. Journal of Child Psychology and Psychiatry, 52, 619626.CrossRefGoogle ScholarPubMed
Bishop, S. J., Cohen, J. D., Fossella, J., Casey, B. J., & Farah, M. J. (2006). COMT genotype influences prefrontal response to emotional distraction. Cognitive, Affective, & Behavioral Neuroscience, 6, 6270.CrossRefGoogle ScholarPubMed
Blasi, G., Mattay, V. S., Bertolino, E., Callicott, J. H., Das, S., Kolachana, B. S., et al. (2005). Effect of catechol-O-methyltransferase Val158Met genotype on attentional control. Journal of Neuroscience, 25, 50385045.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Braungart-Rieker, J., Garwood, M. M., & Stifter, C. A. (1997). Compliance and noncompliance: The roles of maternal control and child temperament. Journal of Applied Developmental Psychology, 18, 411428.CrossRefGoogle Scholar
Bray, N. J., Buckland, P. R., Williams, N. M., Williams, H. J., Norton, N., Owen, M. J., et al. (2003). A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain. American Journal of Human Genetics, 73, 152161.CrossRefGoogle ScholarPubMed
Briggs-Gowan, M. J., & Carter, A. S. (1998). Preliminary acceptability and psychometrics of the Infant–Toddler Social and Emotional Assessment (ITSEA): A new adult-report questionnaire. Infant Mental Health Journal, 19, 422445.3.0.CO;2-U>CrossRefGoogle Scholar
Bruder, G. E., Keilp, J. G., Xu, H., Shikhman, M., Schori, E., Gorman, J. M., et al. (2005). Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58, 901907.CrossRefGoogle ScholarPubMed
Burdick, K. E., Funke, B., Goldberg, J. F., Bates, J. A., Jaeger, J., Kucherlapati, R., et al. (2007). COMT genotype increases risk for bipolar I disorder and influences neurocognitive performance. Bipolar Disorders, 9, 370376.CrossRefGoogle ScholarPubMed
Claw, K. G., Tito, R. Y., Stone, A. C., & Verrelli, B. C. (2010). Haplotype structure and divergence at human and chimpanzee serotonin transporter and receptor genes: Implications for behavioral disorder association analyses. Molecular Biology and Evolution, 27, 15181529.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
De Frias, C. M., Annerbrink, K., Westberg, L., Eriksson, E., Adolfsson, R., & Nilsson, L. (2005). Catechol-O-methyltransferase Val158Met polymorphism is associated with cognitive performance in nondemented adults. Journal of Cognitive Neuroscience, 17, 10181025.CrossRefGoogle ScholarPubMed
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592.CrossRefGoogle ScholarPubMed
Diamond, A., Briand, L., Fossella, J., & Gehlbach, L. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children. American Journal of Psychiatry, 161, 125132.CrossRefGoogle ScholarPubMed
Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168, 10411049.CrossRefGoogle ScholarPubMed
Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences, 98, 69176922.CrossRefGoogle Scholar
Eisenberg, N., Spinrad, T. L., & Eggum, N. D. (2010). Emotion-related self-regulation and its relation to children's maladjustment. Annual Review of Clinical Psychology, 6, 495525.CrossRefGoogle ScholarPubMed
Eisenberg, N., Spinrad, T. L., Eggum, N. M., Silva, K. M., Reiser, M., Hofer, C., et al. (2010). Relations among maternal socialization, effortful control, and maladjustment in early childhood. Development and Psychopathology, 22, 507525.CrossRefGoogle ScholarPubMed
Eisenberg, N., Zhou, Q., Spinrad, T. L., Valiente, C., Fabes, R. A., & Liew, J. (2005). Relations among positive parenting, children's effortful control, and externalizing problems: A three-wave longitudinal study. Child Development, 76, 10551071.CrossRefGoogle ScholarPubMed
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 723.CrossRefGoogle Scholar
Enoch, M. A., Waheed, J. F., Harris, C. R., Albaugh, B., & Goldman, D. (2009). COMT Val158Met and cognition: Main effects and interaction with educational attainment. Genes, Brain and Behavior, 8, 3642.CrossRefGoogle ScholarPubMed
Fish, M., Stifter, C. A., & Belsky, J. (1991). Conditions of continuity and discontinuity in infant negative emotionality: Newborn to five months. Child Development, 62, 15251537.CrossRefGoogle ScholarPubMed
Harrison, P. J., & Tunbridge, E. M. (2008). Catechol-O-methyltransferase (COMT): A gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders. Neuropsychopharmacology, 33, 30373045.CrossRefGoogle ScholarPubMed
Hettema, J. M., An, S., Bukszar, J., van den Oord, E. J., Neale, M. C., Kendler, K. S., et al. (2008). Catechol-O-methyltransferase contributes to genetic susceptibility shared among anxiety spectrum phenotypes. Biological Psychiatry, 64, 302310.CrossRefGoogle ScholarPubMed
Holmboe, K., Nemoda, Z., Fearon, R. M., Csibra, G., Sasvari-Szekely, M., & Johnson, M. H. (2010). Polymorphisms in dopamine system genes are associated with individual differences in attention in infancy. Developmental Psychology, 46, 404416.CrossRefGoogle ScholarPubMed
Johnson, P. O., & Neyman, J. (1936). Tests of certain linear hypotheses and their application to some educational problems. Statistical Research Memoirs, 1, 5793.Google Scholar
Kocabas, N. A., Faghel, C., Barreto, M., Kasper, S., Linotte, S., Mendlewicz, J., et al. (2010). The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: A case–control association study. International Clinical Psychopharmacology, 25, 218227.CrossRefGoogle ScholarPubMed
Kochanska, G., Aksan, N., & Nichols, K. E. (2003). Maternal power assertion in discipline and moral discourse contexts: Commonalities, differences, and implications for children's moral conduct and cognition. Developmental Psychology, 39, 949963.CrossRefGoogle ScholarPubMed
Kochanska, G., Kim, S., Barry, R. A., & Philibert, R. A. (2011). Children's genotypes interact with maternal responsive care in predicting children's competence: Diathesis–stress or differential susceptibility? Development and Psychopathology, 23, 605616.CrossRefGoogle ScholarPubMed
Kochanska, G., Murray, K. T., & Harlan, E. T. (2000). Effortful control in early childhood: Continuity and change, antecedents, and implications for social development. Developmental Psychology, 36, 220232.CrossRefGoogle ScholarPubMed
Kochanska, G., Murray, K., Jacques, T. Y., Koenig, A. L., & Vandegeest, K. A. (1996). Inhibitory control in young children and its role in emerging internalization. Child Development, 67, 490507.CrossRefGoogle ScholarPubMed
Kok, R., Linting, M., Bakermans-Kranenburg, M., IJzendoorn, M. H., Jaddoe, V. W., Hofman, A., et al. (2013). Maternal sensitivity and internalizing problems: Evidence from two longitudinal studies in early childhood. Child Psychiatry and Human Development, 44, 751765.CrossRefGoogle ScholarPubMed
Lachman, H. M., Papolos, D. F., Saito, T., Yu, Y. M., Szumlanski, C. L., & Weinshilboum, R. M. (1996). Human catechol-O-methyltransferase pharmacogenetics: Description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics, 6, 243250.CrossRefGoogle ScholarPubMed
Laucht, M., Blomeyer, D., Buchmann, A. F., Treutlein, J., Schmidt, M. H., Esser, G., et al. (2012). Catechol-O-methyltransferase Val158Met genotype, parenting practices and adolescent alcohol use: Testing the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry, 53, 351359.CrossRefGoogle Scholar
Lemery-Chalfant, K. (2010). Genes and environments: How they work together to promote resilience. In Reich, J. W., Zautra, A. J., & Hall, J. S. (Eds.), Handbook of adult resilience (pp. 5578). New York: Guilford Press.Google Scholar
Lengua, L. J., Honorado, E., & Bush, N. R. (2007). Contextual risk and parenting as predictors of effortful control and social competence in preschool children. Journal of Applied Developmental Psychology, 28, 4055.CrossRefGoogle ScholarPubMed
Lipska, B. K., Mitkus, S., Caruso, M., Hyde, T. M., Chen, J., Vakkalanka, R., et al. (2006). RGS4 mRNA expression in postmortem human cortex is associated with COMT Val158Met genotype and COMT enzyme activity. Human Molecular Genetics, 15, 28042812.CrossRefGoogle ScholarPubMed
Lipsky, R. H., Sparling, M. B., Ryan, L. M., Xu, K., Salazar, A. M., Goldman, D., et al. (2005). Association of COMT Val158Met genotype with executive functioning following traumatic brain injury. Journal of Neuropsychiatry, 17, 465471.CrossRefGoogle ScholarPubMed
Liu, B., Song, M., Li, J., Liu, Y., Li, K., Yu, C., et al. (2010). Prefrontal-related functional connectivities within the default network are modulated by COMT Val158Met in healthy young adults. Journal of Neuroscience, 30, 6469.CrossRefGoogle ScholarPubMed
Lotta, T., Vidgren, J., Tilgmann, C., Ulmanen, I., Melen, K., Julkunen, I., et al. (1995). Kinetics of human soluble and membrane-bound catechol-O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry, 34, 42024210.CrossRefGoogle ScholarPubMed
Luby, J. L., Heffelfinger, A. K., Mrakotsky, C., Brown, K. M., Hessler, M. J., Wallis, J. M., et al. (2003). The clinical picture of depression in preschool children. Journal of the American Academy of Child & Adolescent Psychiatry, 42, 340348.CrossRefGoogle ScholarPubMed
Malhotra, A. K., Kestler, L. J., Mazzanti, C., Bates, J. A., Goldberg, T. E., & Goldman, D. (2002). A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. American Journal of Psychiatry, 159, 652654.CrossRefGoogle ScholarPubMed
McCrae, R. R., & Costa, P. T. (1987). Validation of the five-factor model of personality across instruments and observers. Journal of Personality and Social Psychology, 85, 8190.CrossRefGoogle Scholar
McGrath, M., Kawachi, I., Ascherio, A., Colditz, G. A., Hunter, D. J., & De Vivo, I. (2004). Association between catechol-O-methyltransferase and phobic anxiety. American Journal of Psychiatry, 161, 17031705.CrossRefGoogle ScholarPubMed
McLeod, B. D., Weisz, J. R., & Wood, J. J. (2007). Examining the association between parenting and childhood depression: A meta-analysis. Clinical Psychology Review, 27, 9861003.CrossRefGoogle ScholarPubMed
McLeod, B. D., Wood, J. J., & Weisz, J. R. (2007). Examining the association between parenting and childhood anxiety: A meta-analysis. Clinical Psychology Review, 27, 155172.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Nichols, T., Callicott, J. H., Ding, J., Kolachana, B., Buckholtz, J., et al. (2006). Impact of complex genetic variation in COMT on human brain function. Molecular Psychiatry, 11, 867877.CrossRefGoogle ScholarPubMed
Mier, D., Kirsch, P., & Meyer-Lindenberg, A. (2009). Neural substrates of pleiotropic action of genetic variation in COMT: A meta-analysis. Molecular Psychiatry, 15, 918927.CrossRefGoogle ScholarPubMed
Monroe, S. M., & Simons, A. D. (1991). Diathesis–stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.CrossRefGoogle ScholarPubMed
Montag, C., Buckholtz, J. W., Hartmann, P., Merz, M., Burk, C., Hennig, J., et al. (2008). COMT genetic variation affects fear processing: Psychophysiological evidence. Behavioral Neuroscience, 122, 901909.CrossRefGoogle ScholarPubMed
Nobile, M., Rusconi, M., Bellina, M., Marino, C., Giorda, R., Carlet, O., et al. (2009). COMT Val158Met polymorphism and socioeconomic status interact to predict attention deficit/hyperactivity problems in children aged 10–14. European Child and Adolescent Psychiatry, 19, 549557.CrossRefGoogle ScholarPubMed
Obradović, J., Bush, N. R., Stampterdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289.CrossRefGoogle ScholarPubMed
Oldehinkel, A. J., Hartman, C. A., Ferdinand, R. F., Verhulst, F. C., & Ormel, J. (2007). Effortful control as modifier of the association between negative emotionality and adolescents' mental health problems. Development and Psychopathology, 19, 523539.CrossRefGoogle ScholarPubMed
Olsson, C. A., Anney, R. J., Lotfi-Miri, M., Byrnes, G. B., Williamson, R., & Patton, G. C. (2005). Association between the COMT Val158Met polymorphism and propensity to anxiety in an Australian population-based longitudinal study of adolescent health. Psychiatric Genetics, 15, 109115.CrossRefGoogle Scholar
Pluess, M., & Belsky, J. (2012). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin. Advance online publication.Google ScholarPubMed
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945959.CrossRefGoogle ScholarPubMed
Propper, C., Willoughby, M., Halpern, C. T., Carbone, M. A., & Cox, M. (2007). Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Developmental Psychobiology, 49, 619632.CrossRefGoogle ScholarPubMed
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409.CrossRefGoogle ScholarPubMed
Rothbart, M. K., Ahadi, S. A., Hershey, K., & Fisher, P. (2001). Investigations of temperament at three to seven years: The Children's Behavior Questionnaire. Child Development, 72, 13941408.CrossRefGoogle ScholarPubMed
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W. & Lerner, R. M. (Series Eds.) & Eisenberg, N. (Vol. Ed.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (6th ed., pp. 99166). Hoboken, NJ: Wiley.Google Scholar
Sambrook, J., & Russell, D. W. (2001). Molecular cloning: A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177.CrossRefGoogle ScholarPubMed
Shifman, S., Bronstein, M., Sternfeld, M., Pisanté-Shalom, A., Lev-Lehman, E., Weizman, A., et al. (2002). A highly significant association between a COMT haplotype and schizophrenia. American Journal of Human Genetics, 71, 12961302.CrossRefGoogle ScholarPubMed
Singer, J. A., & Willett, J. B. (2003). Applied longitudinal data analysis. New York: Oxford University Press.CrossRefGoogle Scholar
Smolka, M. N., Bühler, M., Schumann, G., Klein, S., Hu, X., Moayer, M., et al. (2007). Gene–gene effects on central processing of aversive stimuli. Molecular Psychiatry, 12, 307317.CrossRefGoogle ScholarPubMed
Spinrad, T. L., Eisenberg, N., Gaertner, B., Popp, T., Smith, C. L., Kupfer, A., et al. (2007). Relations of maternal socialization and toddlers' effortful control to children's adjustment and social competence. Developmental Psychology, 43, 11701186.CrossRefGoogle ScholarPubMed
Stein, M. B., Fallin, M. D., Schork, N. J., & Gelernter, J. (2005). COMT polymorphisms and anxiety-related personality traits. Neuropsychopharmacology, 30, 20922102.CrossRefGoogle ScholarPubMed
Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978989.CrossRefGoogle ScholarPubMed
Stifter, C. A., Spinrad, T. L., & Braungart-Rieker, J. M. (1999). Toward a developmental model of child compliance: The role of emotion regulation in infancy. Child Development, 70, 2132.CrossRefGoogle Scholar
Straub, R. E., Speer, M. C., Luo, Y., Rojas, K., Overhauser, J., Ott, J., et al. (1993). A microsatellite genetic linkage map of human chromosome 18. Genomics, 15, 4856.CrossRefGoogle ScholarPubMed
Sulik, M. J., Eisenberg, N., Lemery-Chalfant, K., Spinrad, T. L., Silva, K. M., Eggum, N. D., et al. (2012). Interactions between serotonin transporter gene haplotypes and quality of mothers' parenting predict the development of children's noncompliance. Developmental Psychology, 48, 740754.CrossRefGoogle ScholarPubMed
Tabachnik, B. G., & Fidell, L. S. (2006). Using multivariate statistics (5th ed.). Needham Heights, MA: Pearson/Allyn & Bacon.Google Scholar
Taylor, Z. E., Sulik, M. J., Eisenberg, N., Spinrad, T. L., Silva, K. M., Lemery-Chalfant, K., et al. (2013). Development of ego-resiliency: Relations to observed parenting and polymorphisms in the serotonin transporter gene during early childhood. Social Development. Advance online publication.Google Scholar
Tenhunen, J., Salminen, M., Lundstrom, K., Kiviluoto, T., Savolainen, R., & Ulmanen, I. (1994). Genomic organization of the human catechol-O-methyltransferase gene and its expression from two distinct promoters. European Journal of Biochemistry, 223, 10491059.CrossRefGoogle ScholarPubMed
Tunbridge, E. M., Weickert, C. S., Kleinman, J. E., Herman, M. M., Chen, J., Kolachana, B. S., et al. (2007). Catechol-O-methyltransferase enzyme activity and protein expression in human prefrontal cortex across the postnatal lifespan. Cerebral Cortex, 17, 12061212.CrossRefGoogle ScholarPubMed
Voelker, P., Sheese, B. E., Rothbart, M. K., & Posner, M. I. (2009). Variations in catechol-O-methyltransferase gene interact with parenting to influence attention in early development. Neuroscience, 164, 121130.CrossRefGoogle ScholarPubMed
White, L. K., McDermott, J. M., Degnan, K. A., Henderson, H. A., & Fox, N. A. (2011). Behavioral inhibition and anxiety: The moderating roles of inhibitory control and attention shifting. Journal of Abnormal Child Psychology, 39, 735747.CrossRefGoogle ScholarPubMed
Yavich, L., Forsberg, M. M., Karayiorgou, M., Gogos, J. A., & Männistö, P. T. (2007). Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. Journal of Neuroscience, 27, 1019610209.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.CrossRefGoogle Scholar