Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T08:01:32.834Z Has data issue: false hasContentIssue false

A biopsychosocial perspective on parenting and developmental psychopathology

Published online by Cambridge University Press:  17 December 2013

Susan D. Calkins*
Affiliation:
University of North Carolina at Greensboro
Cathi Propper
Affiliation:
University of North Carolina at Chapel Hill
W. Roger Mills-Koonce
Affiliation:
University of North Carolina at Chapel Hill
*
Address correspondence and reprint requests to: Susan D. Calkins, Department of Human Development and Family Studies, P.O. Box 26170, University of North Carolina at Greensboro, Greensboro, NC 27402-6170; Email: sdcalkin@uncg.edu.

Abstract

Although considerable research has examined the relations between parental behavior and a range of child developmental outcomes, much of this work has been conducted at a very broad level of behavioral analysis. A developmental psychopathology framework and recent research conducted within this framework point to the need for models of parenting and child psychopathology that offer greater specificity regarding processes that may be implicated in the effects of these relationships. In addition, recent animal work and some human work has focused more on the proximal biological and social mechanisms through which parenting affects child outcomes. Our conceptualization of parenting effects acknowledges that family and child factors are embedded in a dynamic biological and social context that is key to understanding developmental trajectories of child adjustment. In this paper, we review two areas of research that are illuminating the biological processes underlying links between parenting and child psychopathology: molecular genetics and psychophysiology. We adopt a biopsychosocial perspective on developmental psychopathology that implies that a set of hierarchically organized, but reciprocally interacting, processes, from the genetic to the environmental, provide the essential elements of both normative and nonnormative development (Gottlieb, 2007). New directions stimulated by this general approach are discussed, with an emphasis on the contextual and developmental issues and applications implied by such a perspective.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K., & Kumari, M. (2009). Assessing salivary cortisol in large-scale, epidemiological research. Psychoneuroendocrinology, 34, 14231436.Google Scholar
Albers, E. M., Riksen-Walraven, J. M., Sweep, F. C. G. J., & deWeerth, C. (2008). Maternal behavior predicts infant cortisol recovery from a mild everyday stressor. Journal of Child Psychology and Psychiatry, 49, 97103.Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406409.CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers' externalizing behavior in a randomized controlled trial. Developmental Psychology, 44, 293300.Google Scholar
Barr, C. S., Newman, T. K., Shannon, C., Parker, C., Dvoskin, R. L., Becker, M. L., et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic-hypothalamic-pituitary-adrenal axis response to stress in infant macaques. Biological Psychiatry, 55, 733738.CrossRefGoogle ScholarPubMed
Bates, J. E., Petit, G. S., Dodge, K. A., & Ridge, B. (1998). Interaction of temperamental resistance to control and restrictive parenting on the development of externalizing behavior. Developmental Psychology, 34, 982995.Google Scholar
Bauer, A. M, Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children's behavior: Advantages of a multisystem approach. Journal of Developmental and Behavioral Pediatrics, 23, 102.CrossRefGoogle ScholarPubMed
Bazhenova, O. V., Plonskaia, O., & Porges, S. W. (2001). Vagal reactivity and affective adjustment in infants during interaction challenges. Child Development, 72, 13141326.Google Scholar
Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal theory and developmental psychopathology: Emotion dysregulation and conduct problems from preschool to adolescence. Biological Psychology, 74, 174184.Google Scholar
Beauregard, M., Levesque, J., & Paquette, V. (2004). Neural basis of conscious and voluntary self-regulation of emotion. In Beauregard, M. (Ed.), Consciousness, emotional self-regulation and the brain (pp. 163194). Philadelphia, PA: John Benjamins.Google Scholar
Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds.), Origins of the social mind: Evolutionary psychology and child development (pp. 139163). New York: Guilford Press.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.Google Scholar
Belsky, J., Fish, M., & Isabella, R. A. (1991). Continuity and discontinuity in infant negative and positive emotionality: Family antecedents and attachment consequences. Developmental Psychology, 27, 421431.Google Scholar
Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E., et al. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry 7, 118122.Google Scholar
Bernard, K., & Dozier, M. (2010). Examining infants' cortisol responses to laboratory tasks among children varying in attachment disorganization: Stress reactivity or return to baseline? Developmental Psychology, 46, 17711778.Google Scholar
Blair, C., Granger, D. A., Kivlighan, K. T., Mills-Koonce, R., Willoughby, M., Greenberg, M. T., et al. (2008). Maternal and child contributions to cortisol response to emotional arousal in young children from low-income, rural communities. Developmental Psychology, 44, 10951109.Google Scholar
Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, W. R., Cox, M. J., Greenberg, M. T., et al. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 19701984.Google Scholar
Booth, A., McHale, S., & Lansdale, N. (Eds.). (2011). Biosocial research contributions to understanding family processes and problems. New York: Springer.Google Scholar
Bowlby, J. (1969). Attachment and loss: Vol. 1. Attachment. London: Hogarth Press.Google Scholar
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.CrossRefGoogle ScholarPubMed
Boyce, W., Torsheim, T., Currie, C., & Zambon, A. (2006). The family affluence scale as a measure of national wealth: Validation of an adolescent self-report measure. Social Indicators Research, 78, 473487.Google Scholar
Bremner, J. D., & Vermetten, E. (2001). Stress and development: Behavioral and biological consequences. Developmental Psychopathology, 13, 473489.Google Scholar
Bremner, J. D., Vythilingam, M., Vermetten, E., Southwick, S. M., McGlashan, T., Nazeer, A., et al. (2003). MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. American Journal of Psychiatry, 160, 924932.CrossRefGoogle ScholarPubMed
Brotman, D. J., Goldern, S. H., & Wittstein, I. S. (2007). The cardiovascular toll of stress. Lancet, 370, 10891100.Google Scholar
Cairns, R. B., & Rodkin, P. C. (1998). Phenomena regained: From configurations to pathways. In Cairns, R. B., Bergman, L. R., & Kagan, J. (Eds.), Methods and models for studying the individual (pp. 245265). Thousand Oaks, CA: Sage.Google Scholar
Calkins, S. D. (1997). Cardiac vagal tone indices of temperamental reactivity and behavioral regulation in young children. Developmental Psychobiology, 31, 125135.Google Scholar
Calkins, S. D. (2011). Caregiving as co-regulation: Psychobiological processes and child functioning. In Booth, A., McHale, S., & Lansdale, N. (Eds.), Biosocial research contributions to understanding family processes and problems (pp. 4960). New York: Springer.Google Scholar
Calkins, S. D., & Dedmon, S. E. (2000). Physiological and behavioral regulation in two-year-old children with aggressive/destructive behavior problems. Journal of Abnormal Child Psychology, 28, 103118. doi:10.1023/A:1005112912906Google Scholar
Calkins, S. D., & Fox, N. A. (1992). The relations among infant temperament, security of attachment, and behavioral inhibition at 24 months. Child Development, 63, 14561472.Google Scholar
Calkins, S. D., & Fox, N. A. (2002). Self-regulatory processes in early personality development: A multilevel approach to the study of childhood social withdrawal and aggression. Development and Psychopathology, 14, 477498. doi:10.1017/S095457940200305XGoogle Scholar
Calkins, S. D., Graziano, P. A., Berdan, L. E., Keane, S. P., & Degnan, K. A. (2008). Predicting cardiac vagal regulation in early childhood from maternal-child relationship quality during toddlerhood. Developmental Psychobiology, 50, 751766. doi:10.1002/dev.20344Google Scholar
Calkins, S. D., Graziano, P. A., & Keane, S. P. (2007). Cardiac vagal regulation differentiates among children at risk for behavior problems. Biological Psychology, 74, 144153. doi:10.1016/j.biopsycho.2006.09.005Google Scholar
Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool period: Stability, continuity, and implications for childhood adjustment. Developmental Psychobiology 45, 101112.Google Scholar
Calkins, S. D., Smith, C. L., Gill, K. L., & Johnson, M. C. (1998). Maternal interactive style across contexts: Relations to emotional, behavioral and physiological regulation during toddlerhood. Social Development, 7, 350369.CrossRefGoogle Scholar
Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage. Southern Medical Journal, 22, 870.Google Scholar
Carrion, V. G., Weems, C. F., Ray, R., & Reiss, A. L. (2002). Toward an empirical definition of pediatric PTSD: The phenomenology of PTSD symptoms in youth. Journal of the American Academy of Child & Adolescent Psychiatry, 41, 166173.Google Scholar
Caspi, A., McClay, J., Moffitt, T., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854. doi:10.1126/science.1072290CrossRefGoogle ScholarPubMed
Caspi, A., Moffitt, T. E., Newman, D. L., & Silva, P. A. (1996). Behavioral observations at age 3 years predict adult psychiatric disorders. Archives of General Psychiatry, 53, 10331039.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301), 386389. doi:10.1126/science.1083968Google Scholar
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045. doi:10.1523/jneurosci.0526-08.2008Google Scholar
Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7, 10581063.CrossRefGoogle ScholarPubMed
Cicchetti, D. (1984). The emergence of developmental psychopathology. Child Development, 55, 17.Google Scholar
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471502.Google Scholar
Cicchetti, D., & Dawson, G. (2002). Multiple levels of analysis [Editorial]. Development and Psychopathology, 14, 417420.Google Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597600.Google Scholar
Cicchetti, D., & Rogosch, F. A. (2001). Diverse patterns of neuroendocrine activity in maltreated children. Development and Psychopathology, 13, 677694.Google Scholar
Cicchetti, D., Rogosch, F. A., & Thibodeau, E. L. (2012). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Development and Psychopathology, 24, 907928.Google Scholar
Clincy, A., Mills-Koonce, W. R., & the Family Life Project Key Investigators. (in press). Trajectories of intrusive parenting during toddlerhood and school adjustment for low-income African American boys. American Journal of Orthopsychiatry.Google Scholar
Conradt, E., & Ablow, J. (2010). Infant physiological response to the still-face paradigm: Contributions of maternal sensitivity and infants' early regulatory behavior. Infant Behavior and Development, 33, 251265.CrossRefGoogle Scholar
Corter, C., & Fleming, A. (1995). The psychobiology of maternal behavior in human beings. In Bornstein, M. (Ed.). Handbook of parenting: Vol. 2. Biology and ecology of parenting (pp. 141181). New York: Guilford Press.Google Scholar
Cox, M. J., Mills-Koonce, W. R., Propper, C. B., & Gariepy, J. L. (2010). Systems theory and cascades in developmental psychopathology. Development and Psychopathology, 22, 497506.Google Scholar
Crowell, S. E., Beauchaine, T. P., Gatzke-Kopp, L., Sylvers, P., Mead, H., & Chipman-Chacon, J. (2006). Autonomic correlates of attention-deficit/hyperactivity disorder and oppositional defiant disorder in preschool children. Journal of Abnormal Psychology, 115, 174178. doi:10.1037/0021-843X.115.1.174Google Scholar
Cummings, E. M., Davies, P. T., & Campbell, S. B. (2000). Developmental psychopathology and family process: Theory, research and clinical implications. New York: Guilford Press.Google Scholar
Cummings, E., El-Sheikh, C. D., Kouros, C. D., & Keller, P. S. (2007). Children's skin conductance reactivity as a mechanism of risk in the context of parental depressive symptoms. Journal of Child Psychology and Psychiatry, 48, 436445. doi:10.1111/j.1469-7610.2006.01713.Google Scholar
Dadds, M. R., & Salmon, K. (2003). Punishment insensitivity and parenting: Temperament and learning as interacting risks for antisocial behavior. Clinical Child and Family Psychology Review, 6, 6986.Google Scholar
Davies, P. T., & Cummings, E. (1998). Exploring children's emotional security as a mediator of the link between marital relations and child adjustment. Child Development, 69, 124139. doi:10.2307/1132075Google Scholar
Deater-Deckard, K., & Dodge, K. A. (1997). Spare the rod, spoil the authors: Emerging themes in research on parenting and child development. Psychological Inquiry, 8, 230235.Google Scholar
De Bellis, M. D., Keshavan, M., Clark, D. B., Casey, B. J., Giedd, J., Boring, A. M., et al. (1999). Developmental traumatology Part II: Brain development. Biological Psychiatry, 45, 12711284.Google Scholar
De Bellis, M. D., & Kuchibhatla, M. (2006). Cerebellar volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry, 60, 697.Google Scholar
de Kloet, E. R., & Oitzl, M. S. (2003). Who cares for a stressed brain? The mother, the kid or both? Neurobiology of Aging, 24(Suppl. 1), S61S65; discussion S67–S68.Google Scholar
de Kloet, E. R., Oitzl, M. S., & Joels, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422426.Google Scholar
Delahanty, D. L., Nugent, N. R., Christopher, N. C., & Walsh, M. (2005). Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology, 30, 121128.Google Scholar
Edwards, A. C., Dodge, K. A., Latendresse, S. J., Lansford, J. E., Bates, J. E., Pettit, G. S., et al. (2010). MAOA-uVNTR and early physical discipline interact to influence delinquent behavior. Journal of Child Psychology and Psychiatry, 51, 679687. doi:10.1111/j.1469-7610.2009.02196.xGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728.CrossRefGoogle Scholar
Ellis, B., & Nigg, J. (2009). Parenting practices and attention-deficit/ hyperactivity disorder: New findings suggest partial specificity of effects. Journal of the American Academy of Child & Adolescent Psychiatry, 48, 19.Google Scholar
Engfer, A. (1993). Antecedents and consequences of shyness in boys and girls: A 6-year longitudinal study. In Rubin, H. & Asendorpf, J. B. (Eds.), Social withdrawal, inhibition, and shyness (pp. 4980). Hillsdale, NJ: Erlbaum.Google Scholar
Enoch, M. A., Steer, C. D., Newman, T. K., Gibson, N. N., & Goldman, D. D. (2010). Early life stress, MAOA, and gene–environment interactions predict behavioral disinhibition in children. Genes, Brain and Behavior, 9, 6574. doi:10.1111/j.1601-183X.2009.00535.xGoogle Scholar
Erath, S. A., El-Sheikh, M., Hinnant, J., & Cummings, E. (2011). Skin conductance level reactivity moderates the association between harsh parenting and growth in child externalizing behavior. Developmental Psychology, 47, 693706.Google Scholar
Erickson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience & Biobehavioral Reviews, 27, 233246.Google Scholar
Evans, G. W. (2003). A multimethodological analysis of cumulative risk and allostatic load among rural children. Developmental Psychology, 39, 924933.CrossRefGoogle ScholarPubMed
Evans, G. W. (2004). The environment of childhood poverty. American Psychologist, 59, 7792.Google Scholar
Evans, W. E., & Relling, M. V. (1999). Pharmacogenomics: Translating functional genomics into rational therapeutics. Science, 286, 487491.Google Scholar
Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. O. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32, 892905.Google Scholar
Foley, D. L., Eaves, L. J., Wormley, B., Silberg, J. L., Maes, H. H., Kuhn, J., et al. (2004). Childhood adversity, monoamine oxidase A genotype, and risk for conduct disorder. Archives of General Psychiatry, 61, 738744. doi:10.1001/archpsyc.61.7.738Google Scholar
Fowles, D. C., Kochanska, G., & Murray, K. (2000). Electrodermal activity and temperament in preschool children. Psychophysiology, 37, 777787. doi:10.1111/1469-8986.3760777Google Scholar
Fox, N. A. (1989). The psychophysiological correlates of emotional reactivity during the first year of life. Developmental Psychology, 25, 364372.Google Scholar
Fox, N. A., Nichols, K. E., Henderson, H. A., Rubin, K., Schmidt, L., Hamer, D., et al. (2005). Evidence for a gene–environment interaction in predicting behavioral inhibition in middle childhood. Psychological Science, 16, 921926. doi:10.1111/j.1467-9280.2005.01637.Google Scholar
Frazzetto, G., Di Lorenzo, G., Carola, V., Proietti, L.,Sokolowska, E., Siracusano, A., et al. (2007). Early trauma and increased risk for physical aggression during adulthood: The moderating role of MAOA genotype. PLoS ONE, 2, e486. Retrieved from http://www.journal.pone.0000486Google Scholar
Fries, E., Hesse, J., Hellhammer, J., & Hellhammer, D. H. (2005). A new view on hypocortisolism. Psychoneuroendocrinology 30, 10101016.Google Scholar
Frigerio, A., Ceppi, E., Rusconi, M., Giorda, R., Raggi, M. E., & Fearon, P. (2009). The role played by the interaction between genetic factors and attachment in the stress response in infancy. Journal of Child Psychology and Psychiatry 50, 15131522.Google Scholar
Gatzke-Kopp, L. M., Raine, A., Loeber, R., Stouthamer-Loeber, M., & Steinhauer, S. R. (2002). Serious delinquent behavior, sensation seeking, and electrodermal arousal. Journal of Abnormal Child Psychology, 30, 477486.Google Scholar
Gershoff, E. T. (2002). Parental corporal punishment and associated child behaviors and experiences: A meta-analytic and theoretical review. Psychological Bulletin, 128, 539579.Google Scholar
Goldsmith, H. H., & Hewitt, E. C. (2003). Validity of parental report of temperament: Distinctions and needed research. Infant Behavior & Development, 26, 108111. doi:10.1016/S0163-6383(02)00172-8Google Scholar
Goldsmith, H. H., Lemery, K. S., Buss, K. A., & Campos, J. J. (1999). Genetic analyses of focal aspects of infant temperament. Developmental Psychology, 35, 972985. doi:10.1037/0012-1649.35.4.972Google Scholar
Gordis, E. B., Granger, D.A., Susman, E. J., & Trickett, P. K., (2008). Salivary alpha amylase-cortisol asymmetry in maltreated youth. Hormones and Behavior 53, 96103.Google Scholar
Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27, 413.Google Scholar
Gottlieb, G. (2007). Probabilistic epigenesis. Developmental Science, 10, 111.Google Scholar
Granger, D. A., Stansbury, K., & Henker, B. (1994). Preschoolers' behavioral and neuroendocrine responses to social challenge. Merrill–Palmer Quarterly, 40, 2041.Google Scholar
Granger, D. A., Weisz, J. R., McCracken, J. M., Ikeda, S. C., & Douglas, P. (1996). Reciprocal influences among adrenocortical activation, psychosocial processes, and the behavioral adjustment of clinic-referred children. Child Development, 67, 32503262.Google Scholar
Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145173.Google Scholar
Gunnar, M. R., & Quevedo, K. M. (2008). Early care experiences and HPA axis regulation in children: A mechanism for later trauma vulnerability. Progress in Brain Research, 167, 137149.Google Scholar
Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13, 515.Google Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and association with puberty. Development and Psychopathology, 21, 6985.CrossRefGoogle ScholarPubMed
Haberstick, B. C., Lessem, J. M., Hopfer, C. J., Smolen, A., Ehringer, M. A., Timberlake, D., et al. (2005). Monoamine oxidase A (MAOA) and antisocial behaviors in the presence of childhood and adolescent maltreatment. American Journal of Medical Genetics, 135B, 5964.Google Scholar
Halligan, S. L., Herbert, J., Goodyer, I., & Murray, L. (2007). Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents. Biological Psychiatry, 62, 4046.Google Scholar
Ham, J., & Tronick, E. Z. (2006). Infant resilience to the stress of the still-face. Annals of the New York Academy of Sciences, 1094, 297302.Google Scholar
Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 29, 400403.Google Scholar
Heim, C., Newport, D. J., Bonsall, R., Miller, A. H., & Nemeroff, C. B. (2001). Altered pituitary–adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. American Journal of Psychiatry, 158, 575581.Google Scholar
Heim, C., Newport, D. J., Heit, S., Graham, Y. P., Wilcox, M., Bonsall, R., et al. (2000). Pituitary–adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. Journal of the American Medical Association, 284, 592597.CrossRefGoogle ScholarPubMed
Heim, C., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). The link between childhood trauma and depression: Insights from HPA axis studies in humans. Psychoneuroendocrinology, 33, 693710.Google Scholar
Herrmann, M. J., Huter, T., Muller, F., Muhlberger, A., Pauli, P., Reif, A., et al. (2007). Additive effects of serotonin transporter and tryptophan hydroxylase–2 gene variation on emotional processing. Cerebral Cortex, 17, 11601163.Google Scholar
Hertsgaard, L., Gunnar, M., Erickson, M., & Nachmias, M. (1995). Adrenocortical response to the strange situation in infants with disorganized/disoriented attachment relationships. Child Development, 66, 11001106.Google Scholar
Hertzman, C., & Boyce, T. (2010–03). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329347. doi:10.1146/annurev.publhealth.012809.103538Google Scholar
Hill-Soderlund, A. L., Mills-Koonce, W., Propper, C., Calkins, S. D., Granger, D. A., Moore, G. A., et al. (2008). Parasympathetic and sympathetic responses to the strange situation in infants and mothers from avoidant and securely attached dyads. Developmental Psychobiology, 50, 361376. doi:10.1002/dev.20302Google Scholar
Hofer, M. A. (1987). Early social relationships: A psychobiologist's view. Child Development, 58, 633647.Google Scholar
Horwitz, B. N., & Neiderhiser, J. M. (2011). Gene–environment interplay, family relationships, and child adjustment. Journal of Marriage and Family, 73, 804816.Google Scholar
Huffman, L. C., Bryan, Y., del Carmen, R., Pederson, F., Doussard-Roosevelt, J., & Porges, S. (1998). Infant temperament and cardiac vagal tone: Assessments at twelve weeks of age. Child Development, 69, 624635.Google Scholar
Huizinga, D., Haberstick, B. C., Smolen, A., Menard, S., Young, S. E., Corley, R. P., et al. (2006). Childhood maltreatment, subsequent antisocial behavior, and the role of monoamine oxidase A genotype. Biological Psychiatry, 60, 677683. doi:10.1016/j.biopsych.2005.12.022Google Scholar
Hussey, J. M., Marshall, J. M., English, D. J., Knight, E. D., Lau, A. S., Dubowitz, H., et al. (2005). Defining maltreatment according to substantiation: Distinction without a difference? Child Abuse & Neglect, 29, 479492.Google Scholar
Ispa, J. M., Fine, M. A., Halgunseth, L. C., Harper, S., Robinson, J., Boyce, L., et al. (2004). Maternal intrusiveness, maternal warmth, and mother–toddler relationship outcomes: Variations across low-income ethnic and acculturation groups. Child Development, 75, 16131631.Google Scholar
Johnston, T. D., & Edwards, L. (2002). Genes, interactions and the development of behavior. Psychological Review, 109, 2634.Google Scholar
Kim-Cohen, J. J., Caspi, A. A., Taylor, A. A., Williams, B. B., Newcombe, R. R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene–environment interaction predicting children's mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903913. doi:10.1038/sj.mp.4001851Google Scholar
King, J. A., Mandansky, D., King, S., Fletcher, K., & Brewer, J. (2001). Early sexual abuse and low cortisol. Psychiatry & Clinical Neurosciences, 55, 7174.Google Scholar
Kivlighan, K. T., & Granger, D. A. (2006). Salivary α-amylase response to competition: Relation to gender, previous experience, and attitudes. Psychoneuroendocrinology, 31, 703714. doi:10.1016/j.psyneuen.2006.01.007Google Scholar
Kochanska, G., Philibert, R. A., & Barry, R. A. (2009). Interplay of genes and early mother–child relationship in the development of self-regulation from toddler to preschool age. Journal of Child Psychology and Psychiatry, 50, 13311338. doi:10.1111/j.1469-7610.2008.02050.xGoogle Scholar
Kohl, P. L., Jonson-Reid, M., & Drake, B. (2009). Time to leave substantiation behind: Findings from a national probability study. Child Maltreatment, 14, 1726.Google Scholar
Lahey, B. B., Rathouz, P. J., Lee, S. S., Chronis-Tuscano, A., Pelham, W. E., Waldman, I. D., et al. (2011). Interactions between early parenting and a polymorphism of the child's dopamine transporter gene in predicting future child conduct disorder symptoms. Journal of Abnormal Psychology, 120, 3345. doi:10.1037/a0021133CrossRefGoogle Scholar
Lengua, L. J. (2012). Poverty, the development of effortful control, and children's academic, social, and emotional adjustment. In Maholmes, V. & King, R. B. (Eds.), The Oxford handbook of poverty and child development (pp. 491511). New York: Oxford University Press.Google Scholar
Li, J. J., & Lee, S. S. (2012). Association of positive and negative parenting behavior with childhood ADHD: Interactions with offspring monoamine oxidase A (MAO-A) genotype. Journal of Abnormal Child Psychology, 40, 165175. doi:10.1007/s10802-011-9553-zGoogle Scholar
Liu, D., Diorio, J., Day, J. C., Francis, D. D., & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3, 799806.Google Scholar
Main, M. (1990). Cross-cultural studies of attachment organization: Recent studies, changing methodologies, and the concept of conditional strategies. Human Development, 33, 4861.Google Scholar
Matheny, A. P. Jr. (1986). Injuries among toddlers: Contributions from child, mother, and family. Journal of Pediatric Psychology, 11, 163176.Google Scholar
McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine 338, 171179.Google Scholar
McEwen, B. S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry 48, 721731.Google Scholar
McEwen, B. S., & Seeman, T. (1999). Protective and damaging effects of mediators of stress: Elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 3047.Google Scholar
McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 215.Google Scholar
Meaney, M. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 4971.CrossRefGoogle ScholarPubMed
Meaney, M. J., & Szyf, M. (2005). Maternal care as a model for experience-dependent chromatin plasticity? Trends in Neuroscience, 28, 456463.Google Scholar
Meunier, J., Bisceglia, R., & Jenkins, J. M. (2012). Differential parenting and children's behavioral problems: Curvilinear associations and mother–father combined effects. Developmental Psychology, 48, 9871002. doi:10.1037/a0026321Google Scholar
Michel, G., & Moore, C. (1995). Developmental psychobiology: An interdisciplinary science. Cambridge, MA: MIT Press.Google Scholar
Mills-Koonce, W. R., Garrett-Peters, P., Barnett, M., Granger, D., Blair, C., Cox, M. J., et al. (2011). Father contributions to cortisol responses in infancy and early childhood. Developmental Psychology, 47, 388395. doi:10.1037/a0021066Google Scholar
Moffitt, T. E., Caspi, A., & Rutter, M. (2006). Measured gene–environment interactions in psychopathology: Concepts, research strategies, and implications for research, intervention, and public understanding of genetics. Perspectives on Psychological Science, 1, 527. doi:10.1111/j.1745-6916.2006.00002.xGoogle Scholar
Moore, G. A., & Calkins, S. D. (2004). Infants' vagal regulation in the still-face paradigm is related to dyadic coordination of mother–infant interaction. Developmental Psychology, 40, 10681080. doi:10.1037/0012-1649.40.6.1068Google Scholar
Moore, G. A., Hill-Soderlund, A. L., Propper, C. B., Calkins, S. D., Mills-Koonce, W., & Cox, M. J. (2009). Mother–infant vagal regulation in the face-to-face still-face paradigm is moderated by maternal sensitivity. Child Development, 80, 209223. doi:10.1111/j.1467-8624.2008.01255.xGoogle Scholar
Nater, U. M., & Rohleder, N. N. (2009). Salivary alpha-amylase as a noninvasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34, 486496. doi:10.1016/j.psyneuen.2009.01.014Google Scholar
Nesse, R. M., & Young, E. A. (2000). The evolutionary origins and functions of the stress response. In Fink, G. (Ed.), Encyclopedia of stress (Vol. 2, pp. 7984). San Diego, CA: Academic Press.Google Scholar
Obradović, J. (2012). How can the study of physiological reactivity contribute to our understanding of adversity and resilience processes in development? Development and Psychopathology, 24, 371387. doi:10.1017/S0954579412000053Google Scholar
Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31, 300308.Google Scholar
Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. Child Development, 81, 270289. doi:10.1111/j.1467-8624.2009.01394.xGoogle Scholar
O'Neal, C. R., Brotman, L., Huang, K., Gouley, K., Kamboukos, D., Calzada, E. J., et al. (2010). Understanding relations among early family environment, cortisol response, and child aggression via a prevention experiment. Child Development, 81, 290305. doi:10.1111/j.1467-8624.2009.01395.xGoogle Scholar
Oosterlaan, J., Geurts, H. M., Knol, D. L., & Sergeant, J. A. (2005). Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry Research, 134, 110. doi:10.1016/j.psychres.2004.12.005Google Scholar
Oosterman, M., De Schipper, J., Fisher, P., Dozier, M., & Schuengel, C. (2010). Autonomic reactivity in relation to attachment and early adversity among foster children. Development and Psychopathology, 22, 109118. doi:10.1017/S0954579409990290Google Scholar
Patterson, G. R., Reid, J. B., & Dishion, T. J. (1992). Antisocial boys. Eugene, OR: Castalia.Google Scholar
Pendry, P., & Adam, E. K. (2007). Associations between parents' marital functioning, maternal parenting quality, maternal emotion and child cortisol levels. International Journal of Behavioral Development, 31, 218231.Google Scholar
Pettit, G. S., Bates, J. E., & Dodge, K. A. (1997). Supportive parenting, ecological context, and children's adjustment: A seven-year longitudinal study. Child Development, 68, 908923.Google Scholar
Pfeffer, C. R., Altemus, M., Heo, M., & Jiang, H. (2007). Salivary cortisol and psychopathology in children bereaved by the September 11, 2001, terror attacks. Biological Psychiatry, 61, 957965.Google Scholar
Porges, S. W. (1992). Autonomic regulation and attention. In Campbell, B. M., Hayne, H., & Richardson, R. (Eds.), Attention and information processing in infants and adults (pp. 201223). Hillsdale, NJ: Erlbaum.Google Scholar
Porges, S. W., Doussard-Roosevelt, J. A., Portales, A. L., & Greenspan, S. I. (1996). Infant regulation of the vagal “brake” predicts child behavior problems: A psychobiological model of social behavior. Developmental Psychobiology, 29, 697712.Google Scholar
Porter, C. L. (2003). Coregulation in mother–infant dyads: Links to infants' cardiac vagal tone. Psychological Reports, 92, 307319. doi:10.2466/PR0.92.1.307-319Google Scholar
Posner, M. I., Rothbart, M. K., & Sheese, B. E. (2007). Attention genes. Developmental Science, 10, 2429. doi:10.1111/j.1467-7687.2007.00559.xGoogle Scholar
Propper, C., & Moore, G. A. (2006). The influence of parenting on infant emotionality: A multi-level psychobiological perspective. Developmental Review, 26, 427460. doi:10.1016/j.dr.2006.06.003Google Scholar
Propper, C., Moore, G., Mills-Koonce, R., Halpern, C., Hill, A., Calkins, S., et al. (2008). Gene–environment contributions to the development of vagal tone. Child Development, 79, 13781395.Google Scholar
Propper, C., Willoughby, M., Halpern, C. T., Carbone, M. A., & Cox, M. (2007). Parenting quality, DRD4, and the prediction of externalizing and internalizing behaviors in early childhood. Developmental Psychobiology, 49, 619632.Google Scholar
Raison, C. L., & Miller, A. H. (2003). When not enough is too much: The role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. American Journal of Psychiatry, 160, 15541565.Google Scholar
Richters, J. E. (1997). The Hubble hypothesis and the developmentalist's dilemma. Development and Psychopathology, 9, 193229CrossRefGoogle ScholarPubMed
Rothbart, M. K., Ahadi, S. A., & Evans, D. E. (2000). Temperament and personality: Origins and outcomes. Journal of Personality and Social Psychology, 78, 122135.Google Scholar
Rothbart, M. K., & Bates, J. E. (2006). Temperament. In Damon, W., Lerner, R., & Eisenberg, N. (Eds.), Handbook of child psychology: Social, emotional, and personality development (6th ed., pp. 99166). Hoboken, NJ: Wiley.Google Scholar
Rothbaum, F., & Weisz, J. R. (1994). Parental caregiving and child externalizing behavior in nonclinical samples: A meta-analysis. Psychological Bulletin, 116, 5574.Google Scholar
Rutter, M., & Sroufe, L. (2000). Developmental psychopathology: Concepts and challenges. Development and Psychopathology, 12, 265296. doi:10.1017/S0954579400003023Google Scholar
Sadeh, N., Javdani, S., Jackson, J. J., Reynolds, E. K., Potenza, M. N., Gelernter, J., et al. (2010). Serotonin transporter gene associations with psychopathic traits in youth vary as a function of socioeconomic resources. Journal of Abnormal Psychology, 119, 604609. doi:10.1037/a0019709Google Scholar
Sameroff, A. (2010). A unified theory of development: A dialectic integration of nature and nurture. Child Development, 81, 622.Google Scholar
Santa Ana, E. J., Saladin, M. E., Back, S. E., Waldrop, A. E., Spratt, E. G., McRae, A. L., et al. (2006). PTSD and the HPA axis: Differences in response to the cold pressor task among individuals with child vs. adult trauma. Psychoneuroendocrinology, 31, 501509.Google Scholar
Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 5589.Google Scholar
Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in dopamine receptor D4 to influence temperament in early childhood. Development and Psychopathology, 19, 10391046. doi:10.1017/S0954579407000521Google Scholar
Sherwood, A. (1995). Use of impedance cardiography in cardiovascular reactivity research. In Blascovich, J. & Katkin, E. S. (Eds.), Cardiovascular reactivity to psychological stress and disease (pp. 157199). Washington, DC: American Psychological Association.Google Scholar
Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol and externalizing problem behavior in youth. Development and Psychopathology, 17, 118.Google Scholar
Shonkoff, J. (2010). Building a new biodevelopmental framework to guide the future of early childhood policy. Child Development, 81, 49–71, 357367.Google Scholar
Spangler, G. G., & Grossmann, K. E. (1993). Biobehavioral organization in securely and insecurely attached infants. Child Development, 64, 14391450.Google Scholar
Sroufe, L. A. (1996). Emotional development: The organization of emotional life in the early years. New York: Cambridge University Press.Google Scholar
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 1729.Google Scholar
Suess, P. E., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained attention in school-age children. Psychophysiology, 31, 1722.Google Scholar
Sulik, M. J., Eisenberg, N., Lemery-Chalfant, K., Spinrad, T. L., Silva, K. M., Eggum, N. D., et al. (2012). Interactions between serotonin transporter gene haplotypes and quality of mothers' parenting predict the development of children's noncompliance. Developmental Psychology, 48, 740754. doi:10.1037/a0025938Google Scholar
Suomi, S. J. (2004). How gene–environment interactions shape biobehavioral development: Lessons from studies with rhesus monkeys. Research in Human Development, 1, 205222.Google Scholar
Suomi, S. J. (2005). Genetic and environmental factors influencing the expression of impulsive aggression and serotonergic functioning in rhesus monkeys. In Tremblay, R. E., Hartup, W. W., & Archer, J. (Eds.), Developmental origins of aggression (pp. 6382). New York: Guilford Press.Google Scholar
Suomi, S. J. (2006). Risk, resilience, and gene × environment interactions in rhesus monkeys. Annals of the New York Academy of Sciences, 1094, 5262.Google Scholar
Susman, E. J. (2006). Psychobiology of persistent antisocial behavior: Stress, early vulnerabilities and the attenuation hypothesis. Neuroscience Biobehavioral Reviews, 30, 376389.Google Scholar
Tucker-Drob, E. M., & Harden, K. (2012). Intellectual interest mediates gene × socioeconomic status interaction on adolescent academic achievement. Child Development, 83, 743757.Google Scholar
van den Hoofdakker, B. J., Nauta, M. H., Dijck-Brouwer, D., van der Veen-Mulders, L., Sytema, S., Emmelkamp, P. G., et al. (2012). Dopamine transporter gene moderates response to behavioral parent training in children with ADHD: A pilot study. Developmental Psychology, 48, 567574.Google Scholar
Vanyukov, M., Maher, B., Devlin, B., Kirillova, G., Kirisci, L., Yu, L., et al. (2007). The MAOA promoter polymorphism, disruptive behavior disorders, and early onset substance use disorder: Gene–environment interaction. Psychiatric Genetics, 17, 323332.Google Scholar
Waldman, I. D. (2007). Gene–environment interactions reexamined: Does mother's marital stability interact with the dopamine receptor D2 gene in the etiology of childhood attention-deficit/hyperactivity disorder? Development and Psychopathology, 19, 11171128. doi:10.1017/S0954579407000570Google Scholar
Weems, C. F., Zakem, A., Costa, N. M., Cannon, M. F., & Watts, S. E. (2005). Physiological response and childhood anxiety: Association with symptoms of anxiety disorders and cognitive bias. Journal of Clinical Child and Adolescent Psychology, 34, 712723.Google Scholar
Widom, C. S., & Brzustowicz, L. M. (2006). MAOA and the “cycle of violence”: Childhood abuse and neglect, MAOA genotype, and risk for violent and antisocial behavior. Biological Psychiatry, 60, 684689.Google Scholar
Willoughby, M. T., Mills-Koonce, W. R., Propper, C. B., & Waschbusch, D. A. (2013). Observed parenting behaviors interact with a polymorphism of the brain-derived neurotrophic factor gene to predict the emergence of oppositional–defiant and callous–unemotional behaviors at age 3 years. Development and Psychopathology, 25, 903917.Google Scholar
Wright, J., Schnupp, R., Beaver, K. M., Delisi, M., & Vaughn, M. (2012). Genes, maternal negativity, and self-control: Evidence of a gene × environment interaction. Youth Violence and Juvenile Justice, 10, 245260. doi:10.1177/1541204011429315Google Scholar
Young, S. E., Smolen, A., Hewitt, J. K., Haberstick, B. C., Stallings, M. C., Corley, R. P., et al. (2006). Interaction between MAO-A genotype and maltreatment in the risk for conduct disorder: Failure to confirm in adolescent patients. American Journal of Psychiatry, 163, 10191025.Google Scholar