Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T07:20:53.077Z Has data issue: false hasContentIssue false

Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development

Published online by Cambridge University Press:  17 December 2013

Jay Belsky*
Affiliation:
University of California, Davis King Abdulaziz University Birkbeck University of London
Michael Pluess
Affiliation:
Queen Mary University of London
*
Address correspondence and reprint requests to: Jay Belsky, Human and Community Development, University of California, Davis, One Shields Avenue, Hart Hall, Davis, CA 95616; E-mail: jbelsky@ucdavis.edu.

Abstract

We provide a theoretical and empirical basis for the claim that individual differences exist in developmental plasticity and that phenotypic plasticity should be a subject of study in its own right. To advance this argument, we begin by highlighting challenges that evolutionary thinking poses for a science of development and psychopathology, including for the diathesis–stress framework that has (fruitfully) guided so much empirical inquiry on developmental risk, resilience, and dysregulation. With this foundation laid, we raise a series of issues that the differential-susceptibility hypothesis calls attention to, while highlighting findings that have emerged over just the past several years and are pertinent to some of the questions posed. Even though it is clear that this new perspective on Person × Environment interaction is stimulating research and influencing how hypotheses are framed and data interpreted, a great many topics remain that need empirical attention. Our intention is to encourage students of development and psychopathology to treat phenotypic plasticity as an individual-difference construct while exploring unknowns in the differential-susceptibility equation.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, N., Klucken, T., Koppe, G., Osinsky, R., Walter, B., Vaitl, D., et al. (2012). Interaction of the serotonin transporter-linked polymorphic region and environmental adversity: Increased amygdala-hypothalamus connectivity as a potential mechanism linking neural and endocrine hyperreactivity. Biological Psychiatry, 72, 4956. doi:10.1016/j.biopsych.2012.01.030CrossRefGoogle ScholarPubMed
Aron, E. N., & Aron, A. (1997). Sensory-processing sensitivity and its relation to introversion and emotionality. Journal of Personality and Social Psychology, 73, 345368.CrossRefGoogle ScholarPubMed
Aron, E. N., Aron, A., & Jagiellowicz, J. (2012). Sensory-processing sensitivity: A review in the light of the evolution of biological responsivity. Personality and Social Psychology Review, 16, 262282. doi:10.1177/1088868311434213CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., Dobrova-Krol, N. A., & van IJzendoorn, M. H. (in press). Impact of institutional care on attachment disorganization and insecurity of Ukrainian pre-schoolers: Protective effect of the long variant of the serotonin transporter gene (5HTT). International Journal of Behavioral Development.Google Scholar
Bakermans-Kranenburg, M. J., Steele, H., Zeanah, C. H., Muhamedrahimov, R. J., Vorria, P., Dobrova-Krol, N. A., et al. (2011). Attachment and emotional development in institutional care: Characteristics and catch-up. Monographs of the Society for Research in Child Development, 76, 6291. doi:10.1111/j.1540-5834.2011.00628.xCrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to rearing environment depending on dopamine-related genes: New evidence and a meta-analysis. Development and Psychopathology, 23, 3952. doi:10.1017/s0954579410000635CrossRefGoogle ScholarPubMed
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Mesman, J., Alink, L. R., & Juffer, F. (2008). Effects of an attachment-based intervention on daily cortisol moderated by dopamine receptor D4: a randomized control trial on 1- to 3-year-olds screened for externalizing behavior. Development and Psychopathology, 20, 805820.Google Scholar
Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Development and Psychopathology, 44, 293300.Google Scholar
Beach, S. R. H., Brody, G. H., Lei, M.-K., & Philibert, R. A. (2010). Differential susceptibility to parenting among African American youths: Testing the DRD4 hypothesis. Journal of Family Psychology, 24, 513521. doi:10.1037/a0020835CrossRefGoogle ScholarPubMed
Beach, S. R. H., Lei, M. K., Brody, G. H., Simons, R. L., Cutrona, C., & Philibert, R. A. (2012). genetic moderation of contextual effects on negative arousal and parenting in African-American parents. Journal of Family Psychology, 26, 4655. doi:10.1037/a0026236Google Scholar
Beaver, K. M., Sak, A., Vaske, J., & Nilsson, J. (2010). Genetic risk, parent–child relations, and antisocial phenotypes in a sample of African-American males. Psychiatry Research, 175, 160164.CrossRefGoogle Scholar
Belsky, J. (1997). Variation in susceptibility to rearing influences: An evolutionary argument. Psychological Inquiry, 8, 182186.CrossRefGoogle Scholar
Belsky, J. (2000). Conditional and alternative reproductive strategies: Individual differences in susceptibility to rearing experience. In Rodgers, J., Rowe, D., & Miller, W. (Eds.), Genetic influences on human fertility and sexuality: Theoretical and empirical contributions from the biological and behavioral sciences (pp. 127146). Boston: Kluwer.Google Scholar
Belsky, J. (2005). Differential susceptibility to rearing influences: An evolutionary hypothesis and some evidence. In Ellis, B. & Bjorklund, D. (Eds.), Origins of the social mind: Evolutionary psychology and child development (pp. 139163). New York: Guilford Press.Google Scholar
Belsky, J. (2008). War, trauma and children's development: Observations from a modern evolutionary perspective. International Journal of Behavioral Development, 32, 260271. doi:10.1177/0165025408090969CrossRefGoogle Scholar
Belsky, J. (in press). The development of human reproductive strategies: Progress and prospects. Current Directions in Psychological Science.Google Scholar
Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16, 300304.CrossRefGoogle Scholar
Belsky, J., & Beaver, K. M. (2011). Cumulative-genetic plasticity, parenting and adolescent self-control/regulation. Journal of Child Psychology and Psychiatry, 52, 619626.CrossRefGoogle Scholar
Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746754.Google Scholar
Belsky, J., & Pluess, M. (2009a). Beyond diathesis–stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2009b). The nature (and nurture?) of plasticity in early human development. Perspectives on Psychological Science, 4, 345351.CrossRefGoogle ScholarPubMed
Belsky, J., & Pluess, M. (2013). Genetic moderation of early child-care effects on social functioning across childhood: A developmental analysis. Child Development, 84, 12091225. doi:10.1111/cdev.12058Google Scholar
Belsky, J., Pluess, M., & Widaman, K. F. (2013). Confirmatory and competitive evaluation of alternative gene–environment interaction hypotheses. Manuscript submitted for publication.CrossRefGoogle Scholar
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62, 647670.CrossRefGoogle ScholarPubMed
Berry, D., Deater-Deckard, K., McCartney, K., Wang, Z., & Petrill, S. A. (2013). Gene–environment interaction between dopamine receptor D4 7-repeat polymorphism and early maternal sensitivity predicts inattention trajectories across middle childhood. Development and Psychopathology, 25, 291306.Google Scholar
Bevilacqua, L., Carli, V., Sarchiapone, M., George, D. K., Goldman, D., Roy, A., & Enoch, M.-A. (2012). Interaction between FKBP5 and childhood trauma and risk of aggressive behavior. Archives of General Psychiatry, 69, 6270.CrossRefGoogle ScholarPubMed
Bjorklund, D., & Pellegrini, A. (2002). The origins of human nature: Evolutionary developmental psychology. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Blair, C., & Raver, C. C. (2012). Individual development and evolution: Experiential canalization of self-regulation. Developmental Psychology, 48, 647657. doi:10.1037/a0026472Google Scholar
Bogdan, R., Williamson, D. E., & Hariri, A. R. (2012). Mineralocorticoid receptor iso/val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. American Journal of Psychiatry, 169, 515522. doi:10.1176/appi.ajp.2011.11060855CrossRefGoogle ScholarPubMed
Boyce, W. T., Chesney, M., Alkon, A., Tschann, J. M., Adams, S., Chesterman, B., et al. (1995). Psychobiologic reactivity to stress and childhood respiratory illnesses: Results of two prospective studies. Psychosomatic Medicine, 57, 411422.CrossRefGoogle ScholarPubMed
Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271301.Google Scholar
Brody, G. H., Beach, S. R. H., Chen, Y.-F., Obasi, E., Philibert, R. A., Kogan, S. M., & Simons, R. L. (2011). Perceived discrimination, serotonin transporter linked polymorphic region status, and the development of conduct problems. Development and Psychopathology, 23, 617627. doi:10.1017/s0954579411000046CrossRefGoogle ScholarPubMed
Brody, G. H., Chen, Y., & Beach, S. R. H. (2013). Differential susceptibility to prevention: GABAergic, dopaminergic and multilocus effects. Journal of Child Psychology and Psychiatry, 54, 863871. doi:10.1111/cdev.12058CrossRefGoogle ScholarPubMed
Brody, G. H., Chen, Y., Beach, S. R. H., Kogan, S. M., Yu, T., DiClemente, R. J., et al. (in press). Differential sensitivity to prevention programming: A dopaminergic polymorphism-enhanced prevention effect on protective parenting and adolescent substance use. Health Psychology.Google Scholar
Brody, G. H., Yu, T., Chen, Y. F., Kogan, S. M., Evans, G. W., Windle, M., et al. (2012). Supportive family environments, genes that confer sensitivity, and allostatic load among rural African American emerging adults: A prospective analysis. Journal of Family Psychology. doi:10.1037/a0027829Google ScholarPubMed
Buss, A., & Plomin, R. (1984). Temperament: Early developing personality traits. Hillsdale, NJ: Erlbaum.Google Scholar
Buss, K. A. (2011). Which fearful toddlers should we worry about? Context, fear regulation, and anxiety risk. Developmental Psychology, 47, 804819. doi:10.1037/a0023227CrossRefGoogle ScholarPubMed
Cameron, N. M., Champagne, F. A., Parent, C., Fish, E. W., Ozaki-Kuroda, K., & Meaney, M. J. (2005). The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care. Neuroscience & Biobehavioral Reviews, 29, 843865.Google Scholar
Carver, C. S., Johnson, S. L., Joormann, J., Kim, Y., & Nam, J. Y. (2011). Serotonin transporter polymorphism interacts with childhood adversity to predict aspects of impulsivity. Psychological Science, 22, 589595. doi:10.1177/0956797611404085CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 301, 386389.CrossRefGoogle ScholarPubMed
Cassidy, J., Woodhouse, S. S., Sherman, L. J., Stupica, B., & Lejuez, C. W. (2011). Enhancing infant attachment security: An examination of treatment efficacy and differential susceptibility. Development and Psychopathology, 23, 131148. doi:10.1017/s0954579410000696CrossRefGoogle ScholarPubMed
Champagne, D. L., Bagot, R. C., van Hasselt, F., Ramakers, G., Meaney, M. J., de Kloet, E. R., et al. (2008). Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 60376045. doi:10.1523/jneurosci.0526-08.2008Google Scholar
Chen, C., Moyzis, R., Stern, H., He, Q., Li, H., Li, J., et al. (2011). Contributions of dopamine-related genes and environmental factors to highly sensitive personality: A multi-step neuronal system-level approach. PLoS ONE, 6(7), e21636. doi:10.1371/journal.pone.0021636Google Scholar
Chen, J., Li, X., & McGue, M. (2012). Interacting effect of BDNF Val66Met polymorphism and stressful life events on adolescent depression. Genes, Brain and Behavior. doi:10.1111/j.1601-183X.2012.00843.xCrossRefGoogle ScholarPubMed
Chisholm, J. S. (1993). Death, hope, and sex: Life-history theory and the development of reproductive strategies. Current Anthropology, 34, 124. doi:10.1086/204131Google Scholar
Cicchetti, D., & Rogosch, F. A. (2012). Gene × Environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Development and Psychopathology, 24, 411427. doi:10.1017/s0954579412000077CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Oshri, A. (2011). Interactive effects of corticotropin releasing hormone receptor 1, serotonin transporter linked polymorphic region, and child maltreatment on diurnal cortisol regulation and internalizing symptomatology. Development and Psychopathology, 23, 11251138. doi:10.1017/s0954579411000599CrossRefGoogle ScholarPubMed
Cicchetti, D., Rogosch, F. A., & Sturge-Apple, M. L. (2007). Interactions of child maltreatment and serotonin transporter and monoamine oxidase A polymorphisms: Depressive symptomatology among adolescents from low socioeconomic status backgrounds. Development and Psychopathology, 19, 11611180.Google Scholar
Cicchetti, D., Rogosch, F. A., & Thibodeau, E. L. (2012). The effects of child maltreatment on early signs of antisocial behavior: Genetic moderation by tryptophan hydroxylase, serotonin transporter, and monoamine oxidase A genes. Development and Psychopathology, 24, 907928.Google Scholar
Cicchetti, D., Rogosch, F. A., & Toth, S. L. (2011). The effects of child maltreatment and polymorphisms of the serotonin transporter and dopamine D4 receptor genes on infant attachment and intervention efficacy. Development and Psychopathology, 23, 357372. doi:10.1017/s0954579411000113Google Scholar
Clasen, P. C., Wells, T. T., Knopik, V. S., McGeary, J. E., & Beevers, C. G. (2011). 5-HTTLPR and BDNF Val66Met polymorphisms moderate effects of stress on rumination. Genes, Brain and Behavior, 10, 740746. doi:10.1111/j.1601-183X.2011.00715.xGoogle Scholar
Conner, B. T., Hellemann, G. S., Ritchie, T. L., & Noble, E. P. (2010). Genetic, personality, and environmental predictors of drug use in adolescents. Journal of Substance Abuse Treatment, 38, 178190. doi:10.1016/j.jsat.2009.07.004Google Scholar
Conway, A., & Stifter, C. A. (2012). Longitudinal antecedents of executive function in preschoolers. Child Development, 83, 10221036. doi:10.1111/j.1467-8624.2012.01756.xCrossRefGoogle ScholarPubMed
Daly, M., & Wilson, M. I. (1980). Discriminative parental solicitude: A biological perspective. Journal of Marriage and the Family, 42, 277288. doi:10.2307/351225CrossRefGoogle Scholar
Daly, M., & Wilson, M. I. (1981). Child maltreatment from a sociobiological perspective. New Directions for Child Development, 198, 93112. doi:10.1002/cd.23219811107Google Scholar
Daly, M., & Wilson, M. (2005). Carpe diem: Adaptation and devaluing the future. Quarterly Review of Biology, 80, 5560. doi:10.1086/431025Google Scholar
Das, D., Cherbuin, N., Tan, X., Anstey, K. J., & Easteal, S. (2011). DRD4-exonIII-VNTR moderates the effect of childhood adversities on emotional resilience in young-adults. PLoS ONE, 6. doi:10.1371/journal.pone.0020177Google Scholar
Davies, P. T., Sturge-Apple, M. L., & Cicchetti, D. (2011). Interparental aggression and children's adrenocortical reactivity: Testing an evolutionary model of allostatic load. Development and Psychopathology, 23, 801814. doi:10.1017/s0954579411000319Google Scholar
Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52, 119129. doi:10.1111/j.1469-7610.2010.02314.xGoogle Scholar
Del Giudice, M. (2009). Sex, attachment, and the development of reproductive strategies. Behavioral and Brain Sciences, 32, 121. doi:10.1017/s0140525x09000016Google Scholar
Del Giudice, M. (2012). Fetal programming by maternal stress: Insights from a conflict perspective. Psychoneuroendocrinology, 37, 16141629. doi:10.1016/j.psyneuen.2012.05.014CrossRefGoogle ScholarPubMed
Del Giudice, M., Angeleri, R., & Manera, V. (2009). The juvenile transition: A developmental switch point in human life history. Developmental Review, 29, 131. doi:10.1016/j.dr.2008.09.001Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). the adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35, 15621592. doi:10.1016/j.neubiorev.2010.11.007CrossRefGoogle ScholarPubMed
DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. Trends in Ecology & Evolution, 13, 7781. doi:10.1016/s0169-5347(97)01274–3Google Scholar
Dingemanse, N. J., Kazem, A. J., Reale, D., & Wright, J. (2010). Behavioural reaction norms: Animal personality meets individual plasticity. Trends in Ecology & Evolution, 25, 8189. doi:10.1016/j.tree.2009.07.013CrossRefGoogle ScholarPubMed
Docherty, S. J., Kovas, Y., & Plomin, R. (2011). Gene–environment interaction in the etiology of mathematical ability using SNP sets. Behavior Genetics, 41, 141154. doi:10.1007/s10519-010-9405-6Google Scholar
Draper, P., & Harpending, H. (1982). Father absence and reproductive strategy: An evolutionary perspective. Journal of Anthropological Research, 38, 255273.CrossRefGoogle Scholar
Drury, S. S., Gleason, M. M., Theall, K. P., Smyke, A. T., Nelson, C. A., Fox, N. A., et al. (2012). Genetic sensitivity to the caregiving context: The influence of 5HTTLPR and BDNF Val66Met on indiscriminate social behavior. Physiology and Behavior, 106, 728735. doi:10.1016/j.physbeh.2011.11.014Google Scholar
Du Rocher Schudlich, T. D., White, C. R., Fleischhauer, E. A., & Fitzgerald, K. A. (2011). Observed infant reactions during live interparental conflict. Journal of Marriage and Family, 73, 221235. doi:10.1111/j.17413737.2010.00800.xCrossRefGoogle Scholar
Eley, T. C., Hudson, J. L., Creswell, C., Tropeano, M., Lester, K. J., Cooper, P., et al. (2012). Therapygenetics: The 5HTTLPR and response to psychological therapy. Molecular Psychiatry, 17, 236241. doi:10.1038/mp.2011.132Google Scholar
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958.Google Scholar
Ellis, B. J., & Bjorklund, D. F. (2012). Beyond mental health: An evolutionary analysis of development under risky and supportive environmental conditions: An introduction to the special section. Developmental Psychology, 48, 591597. doi:10.1037/a0027651Google Scholar
Ellis, B. J., & Boyce, W. T. (2011). Differential susceptibility to the environment: toward an understanding of sensitivity to developmental experiences and context. Development and Psychopathology, 23, 15. doi:10.1017/s095457941000060xGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/s0954579410000611Google Scholar
Ellis, B. J., Del Giudice, M., Dishion, T. J., Figueredo, A. J., Gray, P., Griskevicius, V., et al. (2012). The evolutionary basis of risky adolescent behavior: implications for science, policy, and practice. Developmental Psychology, 48, 598623. doi:10.1037/a0026220CrossRefGoogle ScholarPubMed
Ellis, B. J., Del Giudice, M., & Shirtcliff, E. A. (in press). Beyond allostatic load: The stress response system as a mechanism of conditional adaptation. In Beauchaine, T. P. & Hinshaw, S. P. (Eds.), Child and adolescent psychopathology (2 ed.). New York: Wiley.Google Scholar
Ellis, B. J., & Garber, J. (2000). Psychosocial antecedents of variation in girls’ pubertal timing: Maternal depression, stepfather presence, and marital and family stress. Child Development, 71, 485501. doi:10.1111/1467-8624.00159Google Scholar
Ellis, B. J., Shirtcliff, E. A., Boyce, W. T., Deardorff, J., & Essex, M. J. (2011). Quality of early family relationships and the timing and tempo of puberty: Effects depend on biological sensitivity to context. Development and Psychopathology, 23, 8599. doi:10.1017/s0954579410000660CrossRefGoogle ScholarPubMed
Enoch, M. A., Steer, C. D., Newman, T. K., Gibson, N., & Goldman, D. (2010). Early life stress, MAOA, and gene–environment interactions predict behavioral disinhibition in children. Genes, Brain and Behavior, 9, 6574. doi:10.1111/j.1601-183X.2009.00535.xGoogle Scholar
Essex, M. J., Armstrong, J. M., Burk, L. R., Goldsmith, H. H., & Boyce, W. T. (2011). Biological sensitivity to context moderates the effects of the early teacher–child relationship on the development of mental health by adolescence. Development and Psychopathology, 23, 149161. doi:10.1017/s0954579410000702CrossRefGoogle ScholarPubMed
Evans, G. W., & Kim, P. (2012). Childhood poverty and young adults’ allostatic load: The mediating role of childhood cumulative risk exposure. Psychological Science. doi:10.1177/0956797612441218CrossRefGoogle Scholar
Figueredo, A. J., & Jacobs, W. J. (2010). Aggression, risk-taking, and alternative life history strategies. In Frias-Armenta, M. & Corral-Verdugo, V. (Eds.), Bio-psycho-social perspectives on interpersonal violence (pp. 328). Hauppauge, NY: NOVA Science.Google Scholar
Fortuna, K., van IJzendoorn, M. H., Mankuta, D., Kaitz, M., Avinun, R., Ebstein, R. P., et al. (2011). Differential genetic susceptibility to child risk at birth in predicting observed maternal behavior. PLoS ONE, 6. doi:10.1371/journal.pone.0019765Google Scholar
Fox, E., Zougkou, K., Ridgewell, A., & Garner, K. (2011). The serotonin transporter gene alters sensitivity to attention bias modification: Evidence for a plasticity gene. Biological Psychiatry, 70, 10491054. doi:10.1016/j.biopsych.2011.07.004CrossRefGoogle ScholarPubMed
Frankenhuis, W. E., & Del Giudice, M. (2012). When do adaptive developmental mechanisms yield maladaptive outcomes? Developmental Psychology, 48, 628642. doi:10.1037/a0025629CrossRefGoogle ScholarPubMed
Frankenhuis, W. E., & Panchanathan, K. (2011). Individual differences in developmental plasticity may result from stochastic sampling. Perspectives on Psychological Science, 6, 336347. doi:10.1177/1745691611412602Google Scholar
Fuller-Rowell, T. E., Evans, G. W., & Ong, A. D. (2012). Poverty and health: The mediating role of perceived discrimination. Psychological Science, 23, 734739. doi:10.1177/0956797612439720Google Scholar
Ganzel, B. L., & Morris, P. A. (2011). Allostasis and the developing human brain: Explicit consideration of implicit models. Development and Psychopathology, 23, 955974. doi:10.1017/s0954579411000447Google Scholar
Garmezy, N. (1974). The study of competence in children at risk for severe psychopathology. In Anthony, E. J. & Koupernik, C. (Eds.), The child in his family: Children at psychiatric risk (Vol. 3, pp. 7797). New York: Wiley.Google Scholar
Garmezy, N., Masten, A. S., & Tellegen, A. (1984). The study of stress and competence in children: A building block for developmental psychopathology. Child Development, 55, 97111. doi:10.1111/j.1467-8624.1984.tb00276.xGoogle Scholar
Gatt, J. M., Nemeroff, C. B., Dobson-Stone, C., Paul, R. H., Bryant, R. A., Schofield, P. R., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14, 681695.Google Scholar
Gibbons, F. X., Roberts, M. E., Gerrard, M., Li, Z., Beach, S. R. H., Simons, R. L., et al. (2012). The impact of stress on the life history strategies of African American adolescents: Cognitions, genetic moderation, and the role of discrimination. Developmental Psychology, 48, 722739. doi:10.1037/a0026599Google Scholar
Glynn, L. M., & Sandman, C. A. (2011). Prenatal origins of neurological development: A Critical period for fetus and mother. Current Directions in Psychological Science, 20, 384389. doi:10.1177/0963721411422056Google Scholar
Gottesman, I., & Shields, J. (1967). A polygenic theory of schizophrenia. Proceedings of the National Academy of Sciences, 58, 199205.Google Scholar
Grazioplene, R. G., DeYoung, C. G., Rogosch, F. A., & Cicchetti, D. (2013). A novel differential susceptibility gene: CHRNA4 and moderation of the effect of maltreatment on child personality. Journal of Child Psychology and Psychiatry, 54, 872880. doi:10.1111/jcpp.12031CrossRefGoogle ScholarPubMed
Gunnar, M. R., Wenner, J. A., Thomas, K. M., Glatt, C. E., McKenna, M. C., & Clark, A. G. (2012). The brain-derived neurotrophic factor Val66Met polymorphism moderates early deprivation effects on attention problems. Development and Psychopathology, 24, 12151223. doi:10.1017/s095457941200065xGoogle Scholar
Hankin, B. L., Nederhof, E., Oppenheimer, C. W., Jenness, J., Young, J. F., Abela, J. R. Z., et al. (2011). Differential susceptibility in youth: Evidence that 5-HTTLPR × Positive Parenting is associated with positive affect “for better and worse.” Translational Psychiatry, 1, e44. doi:10.1038/tp.2011.44Google Scholar
Hinde, R. A., & Stevenson-Hinde, J. (1990). Attachment: Biological, cultural and individual desiderata. Human Development, 33, 6272.Google Scholar
Holmboe, K., Nemoda, Z., Fearon, R. M., Sasvari-Szekely, M., & Johnson, M. H. (2010). Dopamine D4 receptor and serotonin transporter gene effects on the longitudinal development of infant temperament. Genes, Brain and Behavior. doi:10.1111/j.1601-183X.2010.00669.xGoogle Scholar
Hyde, L. W., Bogdan, R., & Hariri, A. R. (2011). Understanding risk for psychopathology through imaging gene–environment interactions. Trends in Cognitive Sciences, 15, 417427. doi:10.1016/j.tics.2011.07.001Google Scholar
Ivorra, J. L., Sanjuan, J., Jover, M., Carot, J. M., Frutos, R., & Molto, M. D. (2010). Gene–environment interaction of child temperament. Journal of Developmental and Behavioral Pediatrics, 31, 545554. doi:10.1097/DBP.0b013e3181ee4072Google Scholar
Jacobs, R. H., Pine, D. S., Schoeny, M. E., Henry, D. B., Gollan, J. K., Moy, G., et al. (2011). Maternal depressive history, teen 5HTTLPR genotype, and the processing of emotional faces: Exploring mechanisms of risk. Behaviour Research and Therapy, 49, 8084. doi:10.1016/j.brat.2010.10.004Google Scholar
James, J., Ellis, B. J., Schlomer, G. L., & Garber, J. (2012). Sex-specific pathways to early puberty, sexual debut, and sexual risk taking: Tests of an integrated evolutionary–developmental model. Developmental Psychology, 48, 687702. doi:10.1037/a0026427Google Scholar
Jessee, A., Mangelsdorf, S. C., Brown, G. L., Schoppe-Sullivan, S. J., Shigeto, A., & Wong, M. S. (2010). Parents’ differential susceptibility to the effects of marital quality on sensitivity across the first year. Infant Behavior & Development, 33, 442452.Google Scholar
Johansson, A., Bergman, H., Corander, J., Waldman, I. D., Karrani, N., Salo, B., et al. (2012). Alcohol and aggressive behavior in men-moderating effects of oxytocin receptor gene (OXTR) polymorphisms. Genes, Brain and Behavior, 11, 214221. doi:10.1111/j.1601-183X.2011.00744.xGoogle Scholar
Juhasz, G., Dunham, J. S., McKie, S., Thomas, E., Downey, D., Chase, D., et al. (2011). The CREB1-BDNF-NTRK2 pathway in depression: Multiple gene–cognition–environment interactions. Biological Psychiatry, 69, 762771. doi:10.1016/j.biopsych.2010.11.019Google Scholar
Kaplan, H. S., & Gangestad, S. W. (2005). Life history theory and evolutionary psychology. In Buss, D. M. (Ed.), The handbook of evolutionary psychology (pp. 6895). New York: Wiley.Google Scholar
Kegel, C. A. T., Bus, A. G., & van IJzendoorn, M. H. (2011). Differential susceptibility in early literacy instruction through computer games: The role of the dopamine D4 receptor gene (DRD4). Mind, Brain, and Education, 5, 7178. doi:10.1111/j.1751-228X.2011.01112.xCrossRefGoogle Scholar
Kim, S., & Kochanska, G. (2012). Child temperament moderates effects of parent–child mutuality on self-regulation: A relationship-based path for emotionally negative infants. Child Development, 83, 12751289. doi:10.1111/j.1467–8624.2012.01778.xCrossRefGoogle ScholarPubMed
Klucken, T., Wehrum, S., Schweckendiek, J., Merz, C. J., Hennig, J., Vaitl, D., et al. (2013). The 5-HTTLPR polymorphism is associated with altered hemodynamic responses during appetitive conditioning. Human Brain Mapping, 34, 25492560. doi:10.1002/hbm.22085Google Scholar
Knafo, A., Israel, S., & Ebstein, R. P. (2011). Heritability of children's prosocial behavior and differential susceptibility to parenting by variation in the dopamine receptor D4 gene. Development and Psychopathology, 23, 5367. doi:10.1017/s0954579410000647Google Scholar
Kochanska, G., & Kim, S. (2013). Difficult temperament moderates links between maternal responsiveness and children's compliance and behavior problems in low-income families. Journal of Child Psychology and Psychiatry, 54, 323332. doi:10.1111/jcpp.12002Google Scholar
Kochanska, G., Kim, S., Barry, R. A., & Philibert, R. A. (2011). Children's genotypes interact with maternal responsive care in predicting children's competence: Diathesis–stress or differential susceptibility? Development and Psychopathology, 23, 605616.Google Scholar
Korte, S. M., Koolhaas, J. M., Wingfield, J. C., & McEwen, B. S. (2005). The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neuroscience & Biobehavioral Reviews, 29, 338. doi:10.1016/j.neubiorev.2004.08.009Google Scholar
Kuepper, Y., Wielpuetz, C., Alexander, N., Mueller, E., Grant, P., & Hennig, J. (2012). 5-HTTLPR S-allele: A genetic plasticity factor regarding the effects of life events on personality? Genes, Brain and Behavior. doi:10.1111/j.1601-183X.2012.00783.xCrossRefGoogle ScholarPubMed
Kuzawa, C. W. (2005). Fetal origins of developmental plasticity: Are fetal cues reliable predictors of future nutritional environments? American Journal of Human Biology, 17, 521. doi:10.1002/ajhb.20091Google Scholar
Laucht, M., Blomeyer, D., Buchmann, A. F., Treutlein, J., Schmidt, M. H., Esser, G., et al. (2012). Catechol-O-methyltransferase Val158Met genotype, parenting practices and adolescent alcohol use: Testing the differential susceptibility hypothesis. Journal of Child Psychology and Psychiatry, 53, 351359. doi:10.1111/j.1469-7610.2011.02408.xGoogle Scholar
Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71, 543562.Google Scholar
Manuck, S. B. (2011). Delay discounting covaries with childhood socioeconomic status as a function of genetic variation in the dopamine D4 receptor (DRD4). Paper presented at the Society for Research in Child Development, Montreal.Google Scholar
Masten, A. S. (2007). Resilience in developing systems: Progress and promise as the fourth wave rises. Development and Psychopathology, 19, 921930. doi:10.1017/s0954579407000442Google Scholar
Masten, A. S., Best, K., & Garmezy, N. (1990). Resilience and development: Contributions from the study of children who overcome adversity. Development and Psychopathology, 2, 425444.Google Scholar
Mata, J., Thompson, R. J., & Gotlib, I. H. (2010). BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychology, 29, 130133. doi:10.1037/a0017261CrossRefGoogle ScholarPubMed
Mathot, K. J., van den Hout, P. J., Piersma, T., Kempenaers, B., Reale, D., & Dingemanse, N. J. (2011). Disentangling the roles of frequency- vs. state-dependence in generating individual differences in behavioural plasticity. Ecology Letters, 14, 12541262. doi:10.1111/j.1461-0248.2011.01698.xGoogle Scholar
Mitchell, C., Notterman, D., Brooks-Gunn, J., Hobcraft, J., Garfinkel, I., Jaeger, K., et al. (2011). Role of mother's genes and environment in postpartum depression. Proceedings of the National Academy of Sciences, 108, 81898193. doi:10.1073/pnas.1014129108Google Scholar
Monroe, S. M., & Simons, A. D. (1991). Diathesis–stress theories in the context of life stress research: Implications for the depressive disorders. Psychological Bulletin, 110, 406425.Google Scholar
Mulvihill, D. (2005). The health impact of childhood trauma: An interdisciplinary review, 1997–2003. Issues in Comprehensive Pediatric Nursing, 28, 115136. doi:10.1080/01460860590950890Google Scholar
Nederhof, E., & Schmidt, M. V. (2012). Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiology & Behavior, 106, 691700. doi:10.1016/j.physbeh.2011.12.008Google Scholar
Nettle, D. (2010). Dying young and living fast: Variation in life history across English neighborhoods. Behavioral Ecology, 21, 387395. doi:10.1093/beheco/arp202Google Scholar
Nettle, D. (2011). Flexibility in reproductive timing in human females: integrating ultimate and proximate explanations. Philosophical Transactions of the Royal Society, 366B, 357365. doi:10.1098/rstb.2010.0073Google Scholar
Nijmeijer, J. S., Hartman, C. A., Rommelse, N. N. J., Altink, M. E., Buschgens, C. J. M., Fliers, E. A., et al. (2010). Perinatal risk factors interacting with catechol-O-methyltransferase and the serotonin transporter gene predict ASD symptoms in children with ADHD. Journal of Child Psychology and Psychiatry, 51, 12421250. doi:10.1111/j.1469-7610.2010.02277.xGoogle Scholar
Nikolova, Y. S., Bogdan, R., Brigidi, B. D., & Hariri, A. R. (2012). Ventral striatum reactivity to reward and recent life stress interact to predict positive affect. Biological Psychiatry, 72, 157163. doi:10.1016/j.biopsych.2012.03.014Google Scholar
Nikolova, Y. S., Ferrell, R. E., Manuck, S. B., & Hariri, A. R. (2011). Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology, 36, 19401947. doi:10.1038/npp.2011.82Google Scholar
Obradovic, J., Bush, N. R., & Boyce, W. T. (2011). The interactive effect of marital conflict and stress reactivity on externalizing and internalizing symptoms: The role of laboratory stressors. Development and Psychopathology, 23, 101114. doi:10.1017/s0954579410000672Google Scholar
Obradovic, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socio-emotional behavior and school readiness. Child Development, 81, 270289.Google Scholar
Park, A., Sher, K. J., Todorov, A. A., & Heath, A. C. (2011). Interaction between the DRD4 VNTR polymorphism and proximal and distal environments in alcohol dependence during emerging and young adulthood. Journal of Abnormal Psychology, 120, 585595. doi:10.1037/a0022648Google Scholar
Pergamin-Hight, L., Bakermans-Kranenburg, M. J., van IJzendoorn, M. H., & Bar-Haim, Y. (2012). Variations in the promoter region of the serotonin transporter gene and biased attention for emotional information: A meta-analysis. Biological Psychiatry, 71, 373379. doi:10.1016/j.biopsych.2011.10.030CrossRefGoogle ScholarPubMed
Pitzer, M., Jennen-Steinmetz, C., Esser, G., Schmidt, M. H., & Laucht, M. (2011). Differential susceptibility to environmental influences: The role of early temperament and parenting in the development of externalizing problems. Comprehensive Psychiatry, 52, 650658. doi:10.1016/j.comppsych.2010.10.017Google Scholar
Plomin, R., & Daniels, D. (1987). Why are children in the same family so different from one another? Behavioral and Brain Sciences, 10, 116.Google Scholar
Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23, 2938.Google Scholar
Pluess, M., & Belsky, J. (2013). Vantage sensitivity: Individual differences in response to positive experiences. Psychological Bulletin, 139, 901916. doi:10.1037/a0030196CrossRefGoogle ScholarPubMed
Pluess, M., Belsky, J., Way, B. M., & Taylor, S. E. (2010). 5-HTTLPR moderates effects of life events on neuroticism: Differential susceptibility to environmental influences. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34, 10701074.Google Scholar
Pluess, M., Stevens, S., & Belsky, J. (2013). Differential susceptibility: Developmental and evolutionary mechanisms of gene and environment interactions. In Legerstee, M., Haley, D. W., & Bornstein, M. H. (Eds.), The infant mind: Origins of the social brain. New York: Guilford Press.Google Scholar
Pluess, M., Velders, F. P., Belsky, J., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W., et al. (2011). Serotonin transporter polymorphism moderates effects of prenatal maternal anxiety on infant negative emotionality. Biological Psychiatry, 69, 520525. doi:10.1016/j.biopsych.2010.10.006Google Scholar
Poehlmann, J., Hane, A., Burnson, C., Maleck, S., Hamburger, E., & Shah, P. E. (2012). Preterm infants who are prone to distress: Differential effects of parenting on 36-month behavioral and cognitive outcomes. Journal of Child Psychology and Psychiatry and Allied Disciplines. doi:10.1111/j.1469-7610.2012.02564.xGoogle Scholar
Poulin, M. J., Holman, E. A., & Buffone, A. (2012). The neurogenetics of nice: Receptor genes for oxytocin and vasopressin interact with threat to predict prosocial behavior. Psychological Science, 23, 446452.Google Scholar
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regressions, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31, 437448.Google Scholar
Quinlan, R. J. (2007). Human parental effort and environmental risk. Philosophical Transactions of the Royal Society, 274B, 121125. doi:10.1098/rspb.2006.3690Google Scholar
Raver, C. C., Blair, C., & Willoughby, M. (2012). Poverty as a predictor of 4-year-olds’ executive function: New perspectives on models of differential susceptibility. Developmental Psychology, 49, 292. doi:10.1037/a0028343Google Scholar
Rhee, S. H., Corley, R. P., Friedman, N. P., Hewitt, J. K., Hink, L. K., Johnson, D. P., et al. (2012). The etiology of observed negative emotionality from 14 to 24 months. Frontiers in Genetics, 3, 9. doi:10.3389/fgene.2012.00009Google Scholar
Roiser, J. P., Rogers, R. D., Cook, L. J., & Sahakian, B. J. (2006). The effect of polymorphism at the serotonin transporter gene on decision-making, memory and executive function in ecstasy users and controls. Psychopharmacology, 188, 213227. doi:10.1007/s00213-006-0495-zGoogle Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. doi:10.1017/S0954579412000065Google Scholar
Rutter, M. (1979). Protective factors in children's responses to stress and disadvantage. In Kent, M. W. & Rolf, J. E. (Eds.), Primary prevention of psychopathology (Vol. 3, pp. 4974). Hanover, NH: University Press of New England.Google Scholar
Rutter, M. (1987). Psychosocial resilience and protective mechanisms. American Journal of Orthopsychiatry, 57, 316331.Google Scholar
Rutter, M. (2012). Resilience as a dynamic concept. Development and Psychopathology, 24, 335344. doi:10.1017/s0954579412000028Google Scholar
Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sunderland, MA: Sinauer.Google Scholar
Schlomer, G. L., Del Giudice, M., & Ellis, B. J. (2011). Parent–offspring conflict theory: An evolutionary framework for understanding conflict within human families. Psychological Review, 118, 496521. doi:10.1037/a0024043Google Scholar
Schoebi, D., Way, B. M., Karney, B. R., & Bradbury, T. N. (2012). Genetic moderation of sensitivity to positive and negative affect in marriage. Emotion, 12, 208212. doi:10.1037/a0026067Google Scholar
Scott, S., & O'Connor, T. G. (2012). An experimental test of differential susceptibility to parenting among emotionally dysregulated children in a randomized controlled trial for oppositional behavior. Journal of Child Psychology and Psychiatry and Allied Disciplines. doi:10.1111/j.14697610.2012.02586.xGoogle Scholar
Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32, 811830.Google Scholar
Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities building a new framework for health promotion and disease prevention. Journal of the American Medical Association, 301, 22522259.Google Scholar
Sih, A. (2011). Effects of early stress on behavioral syndromes: An integrated adaptive perspective. Neuroscience & Biobehavioral Reviews, 35, 14521465. doi:10.1016/j.neubiorev.2011.03.015Google Scholar
Simons, R. L., Lei, M. K., Beach, S. R., Brody, G. H., Philibert, R. A., & Gibbons, F. X. (2011). Social environmental variation, plasticity genes, and aggression: Evidence for the differential susceptibility hypothesis. American Sociological Review, 76, 833912. doi:10.1177/0003122411427580Google Scholar
Simons, R. L., Lei, M. K., Stewart, E. A., Beach, S. R. H., Brody, G. H., Philibert, R. A., et al. (2012). Social adversity, genetic variation, street code, and aggression: A Genetically informed model of violent behavior. Youth Violence and Juvenile Justice, 10, 324. doi:10.1177/1541204011422087CrossRefGoogle ScholarPubMed
Sonuga-Barke, E. J., Oades, R. D., Psychogiou, L., Chen, W., Franke, B., Buitelaar, J., et al. (2009). Dopamine and serotonin transporter genotypes moderate sensitivity to maternal expressed emotion: The case of conduct and emotional problems in attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 50, 10521063.Google Scholar
Stearns, S. (1992). The evolution of life histories. Oxford: Oxford University Press.Google Scholar
Sturge-Apple, M. L., Cicchetti, D., Davies, P. T., & Suor, J. H. (2012). Differential susceptibility in spillover between interparental conflict and maternal parenting practices: Evidence for OXTR and 5-HTT genes. Journal of Family Psychology, 26, 431442. doi:10.1037/a0028302Google Scholar
Sturge-Apple, M. L., Davies, P. T., Martin, M. J., Cicchetti, D., & Hentges, R. F. (2012). An examination of the impact of harsh parenting contexts on children's adaptation within an evolutionary framework. Developmental Psychology, 48, 791805. doi:10.1037/a0026908Google Scholar
Sulik, M. J., Eisenberg, N., Lemery-Chalfant, K., Spinrad, T. L., Silva, K. M., Eggum, N. D., et al. (2012). Interactions between serotonin transporter gene haplotypes and quality of mothers’ parenting predict the development of children's noncompliance. Developmental Psychology, 48, 740754. doi:10.1037/a0025938Google Scholar
Suzuki, A., Matsumoto, Y., Shibuya, N., Sadahiro, R., Kamata, M., Goto, K., et al. (2011). The brain-derived neurotrophic factor Val66Met polymorphism modulates the effects of parental rearing on personality traits in healthy subjects. Genes, Brain and Behavior, 10, 385391. doi:10.1111/j.1601–183X.2010.00673.xGoogle Scholar
Sweitzer, M. M., Halder, I., Flory, J. D., Craig, A. E., Gianaros, P. J., Ferrell, R. E., et al. (2013). Polymorphic variation in the dopamine D4 receptor predicts delay discounting as a function of childhood socioeconomic status: Evidence for differential susceptibility. Social Cognitive and Affective Neuroscience, 8, 499508. doi:10.1093/scan/nss020Google Scholar
Takane, Y., & Cramer, E. M. (1975). Regions of significance in multiple-regression analysis. Multivariate Behavioral Research, 10, 373383. doi:10.1207/s15327906mbr1003_10Google Scholar
Trivers, R. L. (1974). Parent–offspring conflict. American Zoologist, 14, 249264.Google Scholar
van der Kooy-Hofland, V. A. C., van der Kooy, J., Bus, A. G., van IJzendoorn, M. H., & Bonsel, G. J. (2012). Differential susceptibility to early literacy intervention in children with mild perinatal adversities: Short- and long-term effects of a randomized control trial. Journal of Educational Psychology, 104, 337349. doi:10.1037/a0026984Google Scholar
van de Wiel, N. M., van Goozen, S. H., Matthys, W., Snoek, H., & van Engeland, H. (2004). Cortisol and treatment effect in children with disruptive behavior disorders: A preliminary study. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 10111018.Google Scholar
van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2012). Differential susceptibility experiments: Going beyond correlational evidence: Comment on beyond mental health, differential susceptibility articles. Developmental Psychology, 48, 769774. doi:10.1037/a0027536Google Scholar
van IJzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147. doi:10.1038/tp.2012.73Google Scholar
Verschoor, E., & Markus, C. R. (2011). Affective and neuroendocrine stress reactivity to an academic examination: Influence of the 5-HTTLPR genotype and trait neuroticism. Biological Psychology, 87, 439449. doi:10.1016/j.biopsycho.2011.06.001Google Scholar
Vinberg, M., Trajkovska, V., Bennike, B., Knorr, U., Knudsen, G. M., & Kessing, L. V. (2009). The BDNF Val66Met polymorphism: Relation to familiar risk of affective disorder, BDNF levels and salivary cortisol. Psychoneuroendocrinology, 34, 13801389.Google Scholar
Wakschlag, L. S., Kistner, E. O., Pine, D. S., Biesecker, G., Pickett, K. E., Skol, A. D., et al. (2010). Interaction of prenatal exposure to cigarettes and MAOA genotype in pathways to youth antisocial behavior. Molecular Psychiatry, 15, 928937. doi:10.1038/mp.2009.22CrossRefGoogle ScholarPubMed
Way, B. M., & Taylor, S. E. (2010). The serotonin transporter promoter polymorphism is associated with cortisol response to psychosocial stress. Biological Psychiatry, 67, 487492.Google Scholar
Werner, E. E., & Smith, R. (1977). Kauai's children come of age. Honolulu, HI: University of Hawaii Press.Google Scholar
Werner, E. E., & Smith, R. (1982). Vulnerable but invincible: A study of resilient children. New York: McGraw–Hill.Google Scholar
West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.Google Scholar
Whittle, S., Yap, M. B. H., Sheeber, L., Dudgeon, P., Yuecel, M., Pantelis, C., et al. (2011). Hippocampal volume and sensitivity to maternal aggressive behavior: A prospective study of adolescent depressive symptoms. Development and Psychopathology, 23, 115129. doi:10.1017/s0954579410000684Google Scholar
Widaman, K. F., Helm, J. L., Castro-Schilo, L., Pluess, M., Stallings, M. C., & Belsky, J. (2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17, 615622.Google Scholar
Xie, P., Kranzler, H. R., Poling, J., Stein, M. B., Anton, R. F., Farrer, L. A., et al. (2010). Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology, 35, 16841692. doi:10.1038/npp.2010.37Google Scholar
Yaman, A., Mesman, J., van IJzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2010). Parenting and toddler aggression in second-generation immigrant families: The moderating role of child temperament. Journal of Family Psychology, 24, 208211. doi:10.1037/a0019100Google Scholar
Yap, M. B., Whittle, S., Yucel, M., Sheeber, L., Pantelis, C., Simmons, J. G., et al. (2008). Interaction of parenting experiences and brain structure in the prediction of depressive symptoms in adolescents. Archives of General Psychiatry, 65, 13771385. doi:10.1001/archpsyc.65.12.1377Google Scholar
Zimmermann, P., Brueckl, T., Nocon, A., Pfister, H., Binder, E. B., Uhr, M., et al. (2011). Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: Results from a 10-year prospective community study. American Journal of Psychiatry, 168, 11071116. doi:10.1176/appi.ajp.2011.10111577Google Scholar
Zuckerman, M. (1999). Vulnerability to psychopathology: A biosocial model. Washington, DC: American Psychological Association.Google Scholar