Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T16:56:45.285Z Has data issue: false hasContentIssue false

Cortisol and depression: three questions for psychiatry

Published online by Cambridge University Press:  08 May 2012

J. Herbert*
Affiliation:
Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK
*
*Address for correspondence: Professor J. Herbert, Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK. (Email: jh24@cam.ac.uk)

Abstract

Background

Cortisol plays a multifaceted role in major depression disorder (MDD). Diurnal rhythms are disturbed, there is increased resistance to the feedback action of glucocorticoids, excess cortisol may induce MDD, basal levels may be higher and the post-awakening cortisol surge accentuated in those at risk for MDD. Does this suggest new avenues for studying MDD or its clinical management?

Method

The relevant literature was reviewed.

Results

Cortisol contributes to genetic variants for the risk for MDD and the way that environmental events amplify risk. The corticoids' influence begins prenatally, but continues into adulthood. The impact of cortisol at each phase depends not only on its interaction with other factors, such as psychological traits and genetic variants, but also on events that have, or have not, occurred previously.

Conclusions

This review suggests that the time is now right for serious consideration of the role of cortisol in a clinical context. Estimates of cortisol levels and the shape of the diurnal rhythm might well guide the understanding of subtypes of MDD and yield additional indicators for optimal treatment. Patients with disturbed cortisol rhythms might benefit from restitution of those rhythms; they may be distinct from those with more generally elevated levels, who might benefit from cortisol blockade. Higher levels of cortisol are a risk for subsequent depression. Should manipulation of cortisol or its receptors be considered as a preventive measure for some of those at very high risk of future MDD, or to reduce other cortisol-related consequences such as long-term cognitive decline?

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abercrombie, HC, Kalin, NH, Davidson, RJ (2005). Acute cortisol elevations cause heightened arousal ratings of objectively nonarousing stimuli. Emotion 5, 354359.CrossRefGoogle ScholarPubMed
Abercrombie, HC, Kalin, NH, Thurow, ME, Rosenkranz, MA, Davidson, RJ (2003). Cortisol variation in humans affects memory for emotionally laden and neutral information. Behavioral Neuroscience 117, 505516.CrossRefGoogle ScholarPubMed
Alfarez, DN, De Simoni, A, Velzing, EH, Bracey, E, Joels, M, Edwards, FA, Krugers, HJ (2009). Corticosterone reduces dendritic complexity in developing hippocampal CA1 neurons. Hippocampus 19, 828836.CrossRefGoogle ScholarPubMed
Alikhani-Koopaei, R, Fouladkou, F, Frey, FJ, Frey, BM (2004). Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. Journal of Clinical Investigation 114, 11461157.CrossRefGoogle ScholarPubMed
Almeida, OP, Burton, EJ, Ferrier, N, McKeith, IG, O'Brien, JT (2003). Depression with late onset is associated with right frontal lobe atrophy. Psychological Medicine 33, 675681.CrossRefGoogle ScholarPubMed
Alt, SR, Turner, JD, Klok, MD, Meijer, OC, Lakke, EA, Derijk, RH, Muller, CP (2010). Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology 35, 544556.CrossRefGoogle Scholar
Anacker, C, Zunszain, PA, Cattaneo, A, Carvalho, LA, Garabedian, MJ, Thuret, S, Price, J, Pariante, CM (2011). Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Molecular Psychiatry 16, 738750.CrossRefGoogle ScholarPubMed
Arborelius, L, Owens, MJ, Plotsky, PM, Nemeroff, CB (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. Journal of Endocrinology 160, 112.CrossRefGoogle ScholarPubMed
Asnis, GM, Halbreich, U, Nathan, RS, Ostrow, L, Novacenko, H, Endicott, J, Sachar, EJ (1982). The dexamethasone suppression test in depressive illness: clinical correlates. Psychoneuroendocrinology 7, 295301.CrossRefGoogle ScholarPubMed
Bao, AM, Swaab, DF (2010). Corticotropin-releasing hormone and arginine vasopressin in depression focus on the human postmortem hypothalamus. Vitamins and Hormones 82, 339365.CrossRefGoogle ScholarPubMed
Beishuizen, A, Thijs, LG, Vermes, I (2002). Decreased levels of dehydroepiandrosterone sulphate in severe critical illness: a sign of exhausted adrenal reserve? Critical Care 6, 434438.CrossRefGoogle ScholarPubMed
Belanoff, JK, Flores, BH, Kalezhan, M, Sund, B, Schatzberg, AF (2001). Rapid reversal of psychotic depression using mifepristone. Journal of Clinical Psychopharmacology 21, 516521.CrossRefGoogle ScholarPubMed
Belay, H, Burton, CL, Lovic, V, Meaney, MJ, Sokolowski, M, Fleming, AS (2011). Early adversity and serotonin transporter genotype interact with hippocampal glucocorticoid receptor mRNA expression, corticosterone, and behavior in adult male rats. Behavioral Neuroscience 125, 150160.CrossRefGoogle ScholarPubMed
Bhagwagar, Z, Hafizi, S, Cowen, PJ (2005). Increased salivary cortisol after waking in depression. Psychopharmacology (Berlin) 182, 5457.CrossRefGoogle ScholarPubMed
Binder, EB, Nemeroff, CB (2010). The CRF system, stress, depression and anxiety – insights from human genetic studies. Molecular Psychiatry 15, 574588.CrossRefGoogle ScholarPubMed
Birkenhager, TK, van den Broek, WW, Moleman, P, Bruijn, JA (2006). Outcome of a 4-step treatment algorithm for depressed inpatients. Journal of Clinical Psychiatry 67, 12661271.CrossRefGoogle ScholarPubMed
Blauer, KL, Poth, M, Rogers, WM, Bernton, EW (1991). Dehydroepiandrosterone antagonizes the suppressive effects of dexamethasone on lymphocyte proliferation. Endocrinology 129, 31743179.CrossRefGoogle ScholarPubMed
Blugeot, A, Rivat, C, Bouvier, E, Molet, J, Mouchard, A, Zeau, B, Bernard, C, Benoliel, JJ, Becker, C (2011). Vulnerability to depression: from brain neuroplasticity to identification of biomarkers. Journal of Neuroscience 31, 1288912899.CrossRefGoogle ScholarPubMed
Bremner, JD, Vythilingam, M, Vermetten, E, Anderson, G, Newcomer, JW, Charney, DS (2004). Effects of glucocorticoids on declarative memory function in major depression. Biological Psychiatry 55, 811815.CrossRefGoogle ScholarPubMed
Bridges, PK, Jones, MT (1966). The diurnal rhythm of plasma cortisol concentration in depression. British Journal of Psychiatry 112, 12571261.CrossRefGoogle ScholarPubMed
Britton, DR, Koob, GF, Rivier, J, Vale, W (1982). Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sciences 31, 363367.CrossRefGoogle ScholarPubMed
Brown, ES (2009). Effects of glucocorticoids on mood, memory, and the hippocampus. Treatment and preventive therapy. Annals of the New York Academy of Sciences 1179, 4155.CrossRefGoogle ScholarPubMed
Brown, ES, Denniston, D, Gabrielson, B, Khan, DA, Khanani, S, Desai, S (2010). Randomized, double-blind, placebo-controlled trial of acetaminophen for preventing mood and memory effects of prednisone bursts. Allergy and Asthma Proceedings 31, 331336.CrossRefGoogle ScholarPubMed
Brown, G (1986). Expressed emotion and life events in schizophrenia and depression. Journal of Psychosocial Nursing and Mental Health Services 24, 3134.CrossRefGoogle ScholarPubMed
Brown, GW, Bifulco, A, Harris, TO (1987). Life events, vulnerability and onset of depression: some refinements. British Journal of Psychiatry 150, 3042.CrossRefGoogle ScholarPubMed
Brown, WA, Shuey, I (1980). Response to dexamethasone and subtype of depression. Archives of General Psychiatry 37, 747751.CrossRefGoogle ScholarPubMed
Buchanan, TW, Lovallo, WR (2001). Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26, 307317.CrossRefGoogle ScholarPubMed
Buford, TW, Willoughby, DS (2008). Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Applied Physiology, Nutrition, and Metabolism 33, 429433.CrossRefGoogle ScholarPubMed
Bukh, JD, Bock, C, Vinberg, M, Werge, T, Gether, U, Vedel Kessing, L (2009). Interaction between genetic polymorphisms and stressful life events in first episode depression. Journal of Affective Disorders 119, 107115.CrossRefGoogle ScholarPubMed
Butler, PW, Besser, GM (1968). Pituitary-adrenal function in depression. Lancet 2, 51.CrossRefGoogle ScholarPubMed
Cao-Lei, L, Leija, SC, Kumsta, R, Wust, S, Meyer, J, Turner, JD, Muller, CP (2011). Transcriptional control of the human glucocorticoid receptor: identification and analysis of alternative promoter regions. Human Genetics 129, 533543.CrossRefGoogle ScholarPubMed
Capuron, L, Dantzer, R (2003). Cytokines and depression: the need for a new paradigm. Brain, Behavior, and Immunology 17 (Suppl. 1), S119S124.CrossRefGoogle ScholarPubMed
Carroll, BJ (1982). Use of the dexamethasone suppression test in depression. Journal of Clinical Psychiatry 43, 4450.Google ScholarPubMed
Carroll, BJ (1986). Informed use of the dexamethasone suppression test. Journal of Clinical Psychiatry 47, 1012.Google ScholarPubMed
Carroll, BJ, Martin, FI, Davies, B (1968). Resistance to suppression by dexamethasone of plasma 11-O.H.C.S. levels in severe depressive illness. British Medical Journal 3, 285287.CrossRefGoogle ScholarPubMed
Caspi, A, Sugden, K, Moffitt, TE, Taylor, A, Craig, IW, Harrington, H, McClay, J, Mill, J, Martin, J, Braithwaite, A, Poulton, R (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386389.CrossRefGoogle ScholarPubMed
Castren, E, Rantamaki, T (2010). Role of brain-derived neurotrophic factor in the aetiology of depression: implications for pharmacological treatment. CNS Drugs 24, 17.CrossRefGoogle ScholarPubMed
Chen, B, Dowlatshahi, D, MacQueen, GM, Wang, JF, Young, LT (2001). Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological Psychiatry 50, 260265.CrossRefGoogle ScholarPubMed
Chen, J, Johnson, RW (2004). Dehydroepiandrosterone-sulfate did not mitigate sickness behavior in mice. Physiology and Behavior 82, 713719.CrossRefGoogle Scholar
Chen, MC, Joormann, J, Hallmayer, J, Gotlib, IH (2009). Serotonin transporter polymorphism predicts waking cortisol in young girls. Psychoneuroendocrinology 34, 681686.CrossRefGoogle ScholarPubMed
Christian, KM, Miracle, AD, Wellman, CL, Nakazawa, K (2010). Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174, 2636.CrossRefGoogle ScholarPubMed
Chu, JW, Matthias, DF, Belanoff, J, Schatzberg, A, Hoffman, AR, Feldman, D (2001). Successful long-term treatment of refractory Cushing's disease with high-dose mifepristone (RU 486). Journal of Clinical Endocrinology and Metabolism 86, 35687353.Google ScholarPubMed
Clark, JA, Flick, RB, Pai, LY, Szalayova, I, Key, S, Conley, RK, Deutch, AY, Hutson, PH, Mezey, E (2008). Glucocorticoid modulation of tryptophan hydroxylase-2 protein in raphe nuclei and 5-hydroxytryptophan concentrations in frontal cortex of C57/Bl6 mice. Molecular Psychiatry 13, 498506.CrossRefGoogle ScholarPubMed
Claustrat, B, Chazot, G, Brun, J, Jordan, D, Sassolas, G (1984). A chronobiological study of melatonin and cortisol secretion in depressed subjects: plasma melatonin, a biochemical marker in major depression. Biological Psychiatry 19, 12151228.Google ScholarPubMed
Clow, A, Thorn, L, Evans, P, Hucklebridge, F (2004). The awakening cortisol response: methodological issues and significance. Stress 7, 2937.CrossRefGoogle ScholarPubMed
Conway-Campbell, BL, Sarabdjitsingh, RA, McKenna, MA, Pooley, JR, Kershaw, YM, Meijer, OC, De Kloet, ER, Lightman, SL (2010). Glucocorticoid ultradian rhythmicity directs cyclical gene pulsing of the clock gene period 1 in rat hippocampus. Journal of Neuroendocrinology 22, 10931100.CrossRefGoogle ScholarPubMed
Copeland, WE, Shanahan, L, Worthman, C, Angold, A, Costello, EJ (2012). Cumulative depression episodes predict later C-reactive protein levels: a prospective analysis. Biological Psychiatry 71, 1521.CrossRefGoogle ScholarPubMed
Dantzer, R (2009). Cytokine, sickness behavior, and depression. Immunology and Allergy Clinics of North America 29, 247264.CrossRefGoogle ScholarPubMed
Dantzer, R, O'Connor, JC, Freund, GG, Johnson, RW, Kelley, KW (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 9, 4656.CrossRefGoogle ScholarPubMed
Dantzer, R, O'Connor, JC, Lawson, MA, Kelley, KW (2011). Inflammation-associated depression: from serotonin to kynurenine. Psychoneuroendocrinology 36, 426436.CrossRefGoogle ScholarPubMed
Dedovic, K, Engert, V, Duchesne, A, Lue, SD, Andrews, J, Efanov, SI, Beaudry, T, Pruessner, JC (2010). Cortisol awakening response and hippocampal volume: vulnerability for major depressive disorder? Biological Psychiatry 68, 847853.CrossRefGoogle ScholarPubMed
de Kloet, ER, Derijk, RH, Meijer, OC (2007). Therapy insight: is there an imbalanced response of mineralocorticoid and glucocorticoid receptors in depression? Nature Clinical Practice Endocrinology and Metabolism 3, 168179.CrossRefGoogle ScholarPubMed
de Kloet, ER, Van Acker, SA, Sibug, RM, Oitzl, MS, Meijer, OC, Rahmouni, K, de Jong, W (2000). Brain mineralocorticoid receptors and centrally regulated functions. Kidney International 57, 13291336.CrossRefGoogle ScholarPubMed
DeRijk, RH, de Kloet, ER, Zitman, FG, van Leeuwen, N (2011). Mineralocorticoid receptor gene variants as determinants of HPA axis regulation and behavior. Endocrine Development 20, 137148.CrossRefGoogle ScholarPubMed
Deuschle, M, Schweiger, U, Weber, B, Gotthardt, U, Korner, A, Schmider, J, Standhardt, H, Lammers, CH, Heuser, I (1997). Diurnal activity and pulsatility of the hypothalamus-pituitary-adrenal system in male depressed patients and healthy controls. Journal of Clinical Endocrinology and Metabolism 82, 234238.CrossRefGoogle ScholarPubMed
Dinan, TG, Lavelle, E, Cooney, J, Burnett, F, Scott, L, Dash, A, Thakore, J, Berti, C (1997). Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatrica Scandinavia 95, 5861.CrossRefGoogle ScholarPubMed
Dong, HW, Swanson, LW, Chen, L, Fanselow, MS, Toga, AW (2009). Genomic-anatomic evidence for distinct functional domains in hippocampal field CA1. Proceedings of the National Academy of Sciences USA 106, 1179411799.CrossRefGoogle ScholarPubMed
Dougherty, LR, Klein, DN, Olino, TM, Dyson, M, Rose, S (2009). Increased waking salivary cortisol and depression risk in preschoolers: the role of maternal history of melancholic depression and early child temperament. Journal of Child Psychology and Psychiatry 50, 14951503.CrossRefGoogle ScholarPubMed
Dowlati, Y, Herrmann, N, Swardfager, W, Liu, H, Sham, L, Reim, EK, Lanctot, KL (2010). A meta-analysis of cytokines in major depression. Biological Psychiatry 67, 446457.CrossRefGoogle ScholarPubMed
Duman, RS, Malberg, J, Thome, J (1999). Neural plasticity to stress and antidepressant treatment. Biological Psychiatry 46, 11811191.CrossRefGoogle ScholarPubMed
Egan, MF, Kojima, M, Callicott, JH, Goldberg, TE, Kolachana, BS, Bertolino, A, Zaitsev, E, Gold, B, Goldman, D, Dean, M, Lu, B, Weinberger, DR (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257269.CrossRefGoogle ScholarPubMed
Engert, V, Efanov, SI, Dedovic, K, Dagher, A, Pruessner, JC (2011). Increased cortisol awakening response and afternoon/evening cortisol output in healthy young adults with low early life parental care. Psychopharmacology (Berlin) 214, 261268.CrossRefGoogle ScholarPubMed
Engert, V, Efanov, SI, Dedovic, K, Duchesne, A, Dagher, A, Pruessner, JC (2010). Perceived early-life maternal care and the cortisol response to repeated psychosocial stress. Journal of Psychiatry and Neuroscience 35, 370377.CrossRefGoogle ScholarPubMed
Eriksson, PS, Perfilieva, E, Bjork-Eriksson, T, Alborn, AM, Nordborg, C, Peterson, DA, Gage, FH (1998). Neurogenesis in the adult human hippocampus. Nature Medicine 4, 13131317.CrossRefGoogle ScholarPubMed
Feldman, D, Mondon, CE, Horner, JA, Weiser, JN (1979). Glucocorticoid and estrogen regulation of corticosteroid-binding globulin production by rat liver. Americal Journal of Physiology 237, E493E499.Google ScholarPubMed
Flammer, JR, Rogatsky, I (2011). Minireview: Glucocorticoids in autoimmunity: unexpected targets and mechanisms. Molecular Endocrinology 25, 10751086.CrossRefGoogle ScholarPubMed
Flores, BH, Kenna, H, Keller, J, Solvason, HB, Schatzberg, AF (2006). Clinical and biological effects of mifepristone treatment for psychotic depression. Neuropsychopharmacology 31, 628636.CrossRefGoogle ScholarPubMed
Franz, CE, O'Brien, RC, Hauger, RL, Mendoza, SP, Panizzon, MS, Prom-Wormley, E, Eaves, LJ, Jacobson, K, Lyons, MJ, Lupien, S, Hellhammer, D, Xian, H, Kremen, WS (2011). Cross-sectional and 35-year longitudinal assessment of salivary cortisol and cognitive functioning: the Vietnam Era twin study of aging. Psychoneuroendocrinology 36, 10401052.CrossRefGoogle ScholarPubMed
Gadek-Michalska, A, Bugajski, AJ, Bugajski, J (2008). Prostaglandins and interleukin-1beta in the hypothalamic-pituitary-adrenal response to systemic phenylephrine under basal and stress conditions. Journal of Physiology and Pharmacology 59, 563575.Google ScholarPubMed
Garcia-Bueno, B, Caso, JR, Leza, JC (2008). Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neuroscience and Biobehavioral Reviews 32, 11361151.CrossRefGoogle ScholarPubMed
Gatt, JM, Nemeroff, CB, Dobson-Stone, C, Paul, RH, Bryant, RA, Schofield, PR, Gordon, E, Kemp, AH, Williams, LM (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry 14, 681695.CrossRefGoogle ScholarPubMed
Gemma, C, Bachstetter, AD, Cole, MJ, Fister, M, Hudson, C, Bickford, PC (2007). Blockade of caspase-1 increases neurogenesis in the aged hippocampus. European Journal of Neuroscience 26, 27952803.CrossRefGoogle ScholarPubMed
Gerritsen, L, Geerlings, MI, Bremmer, MA, Beekman, AT, Deeg, DJ, Penninx, BW, Comijs, HC (2009). Personality characteristics and hypothalamic-pituitary-adrenal axis regulation in older persons. American Journal of Geriatric Psychiatry 17, 10771084.CrossRefGoogle ScholarPubMed
Gilhooley, MJ, Pinnock, SB, Herbert, J (2011). Rhythmic expression of per1 in the dentate gyrus is suppressed by corticosterone: implications for neurogenesis. Neuroscience Letters 489, 177181.CrossRefGoogle ScholarPubMed
Glover, V, O'Connor, TG, O'Donnell, K (2010). Prenatal stress and the programming of the HPA axis. Neuroscience and Biobehavioral Reviews 35, 1722.CrossRefGoogle ScholarPubMed
Goodwin, GM, Muir, WJ, Seckl, JR, Bennie, J, Carroll, S, Dick, H, Fink, G (1992). The effects of cortisol infusion upon hormone secretion from the anterior pituitary and subjective mood in depressive illness and in controls. Journal of Affective Disorders 26, 7383.CrossRefGoogle ScholarPubMed
Goodyer, IM, Bacon, A, Ban, M, Croudace, T, Herbert, J (2009). Serotonin transporter genotype, morning cortisol and subsequent depression in adolescents. British Journal of Psychiatry 195, 3945.CrossRefGoogle ScholarPubMed
Goodyer, IM, Croudace, T, Dudbridge, F, Ban, M, Herbert, J (2010). Polymorphisms in BDNF (Val66Met) and 5-HTTLPR, morning cortisol and subsequent depression in at-risk adolescents. British Journal of Psychiatry 197, 365371.CrossRefGoogle ScholarPubMed
Goodyer, IM, Herbert, J, Tamplin, A (2003). Psychoendocrine antecedents of persistent first-episode major depression in adolescents: a community-based longitudinal enquiry. Psychological Medicine 33, 601610.CrossRefGoogle ScholarPubMed
Goodyer, IM, Herbert, J, Tamplin, A, Altham, PM (2000). Recent life events, cortisol, dehydroepiandrosterone and the onset of major depression in high-risk adolescents. British Journal of Psychiatry 177, 499504.CrossRefGoogle ScholarPubMed
Groves, JO (2007). Is it time to reassess the BDNF hypothesis of depression? Molecular Psychiatry 12, 10791088.CrossRefGoogle ScholarPubMed
Guazzo, EP, Kirkpatrick, PJ, Goodyer, IM, Shiers, HM, Herbert, J (1996). Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. Journal of Clinical Endocrinology and Metabolism 81, 39513960.Google ScholarPubMed
Gubba, EM, Netherton, CM, Herbert, J (2000). Endangerment of the brain by glucocorticoids: experimental and clinical evidence. Journal of Neurocytology 29, 439449.CrossRefGoogle ScholarPubMed
Gutierrez-Mecinas, M, Trollope, AF, Collins, A, Morfett, H, Hesketh, SA, Kersante, F, Reul, JM (2011). Long-lasting behavioral responses to stress involve a direct interaction of glucocorticoid receptors with ERK1/2-MSK1-Elk-1 signaling. Proceedings of the National Academy of Sciences USA 108, 1380613811.CrossRefGoogle ScholarPubMed
Hainer, V, Kunesova, M, Stunkard, AJ, Parizkova, J, Stich, V, Mikulova, R, Starka, L (2001). The within-pair resemblance in serum levels of androgens, sex-hormone binding globulin and cortisol in female obese identical twins – effect of negative energy balance induced by very low-calorie diet. Hormone and Metabolic Research 33, 417422.CrossRefGoogle ScholarPubMed
Halligan, SL, Herbert, J, Goodyer, IM, Murray, L (2004). Exposure to postnatal depression predicts elevated cortisol in adolescent offspring. Biological Psychiatry 55, 376381.CrossRefGoogle ScholarPubMed
Harris, TO, Borsanyi, S, Messari, S, Stanford, K, Cleary, SE, Shiers, HM, Brown, GW, Herbert, J (2000). Morning cortisol as a risk factor for subsequent major depressive disorder in adult women. British Journal of Psychiatry 177, 505510.CrossRefGoogle ScholarPubMed
Hasler, BP, Buysse, DJ, Kupfer, DJ, Germain, A (2010). Phase relationships between core body temperature, melatonin, and sleep are associated with depression severity: further evidence for circadian misalignment in non-seasonal depression. Psychiatry Research 178, 205207.CrossRefGoogle ScholarPubMed
Hastings, MH, Maywood, ES, Reddy, AB (2008). Two decades of circadian time. Journal of Neuroendocrinology 20, 812819.CrossRefGoogle ScholarPubMed
Hazra, A, DuBois, DC, Almon, RR, Jusko, WJ (2007). Assessing the dynamics of nuclear glucocorticoid-receptor complex: adding flexibility to gene expression modeling. Journal of Pharmacokinetics and Pharmacodynamics 34, 333354.CrossRefGoogle ScholarPubMed
Herbert, J (1993). Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Progress in Neurobiology 41, 723791.CrossRefGoogle ScholarPubMed
Herbert, J, Goodyer, IM, Grossman, AB, Hastings, MH, de Kloet, ER, Lightman, SL, Lupien, SJ, Roozendaal, B, Seckl, JR (2006). Do corticosteroids damage the brain? Journal of Neuroendocrinology 18, 393411.CrossRefGoogle ScholarPubMed
Het, S, Wolf, OT (2007). Mood changes in response to psychosocial stress in healthy young women: effects of pretreatment with cortisol. Behavioral Neuroscience 121, 1120.CrossRefGoogle ScholarPubMed
Heydendael, W, Jacobson, L (2009). Glucocorticoid status affects antidepressant regulation of locus coeruleus tyrosine hydroxylase and dorsal raphe tryptophan hydroxylase gene expression. Brain Research 1288, 6978.CrossRefGoogle ScholarPubMed
Holsboer, F, Grasser, A, Friess, E, Wiedemann, K (1994). Steroid effects on central neurons and implications for psychiatric and neurological disorders. Annals of the New York Academy of Sciences 746, 345359; discussion 359–361.CrossRefGoogle ScholarPubMed
Homberg, JR, Lesch, KP (2011). Looking on the bright side of serotonin transporter gene variation. Biological Psychiatry 69, 513519.CrossRefGoogle ScholarPubMed
Huang, GJ, Herbert, J (2006). Stimulation of neurogenesis in the hippocampus of the adult rat by fluoxetine requires rhythmic change in corticosterone. Biological Psychiatry 59, 619624.CrossRefGoogle ScholarPubMed
Hucklebridge, F, Clow, A, Evans, P (1998). The relationship between salivary secretory immunoglobulin A and cortisol: neuroendocrine response to awakening and the diurnal cycle. International Journal of Psychophysiology 31, 6976.CrossRefGoogle ScholarPubMed
Hunter, AL, Minnis, H, Wilson, P (2011). Altered stress responses in children exposed to early adversity: a systematic review of salivary cortisol studies. Stress 14, 614626.CrossRefGoogle ScholarPubMed
Ivy, AS, Rex, CS, Chen, Y, Dube, C, Maras, PM, Grigoriadis, DE, Gall, CM, Lynch, G, Baram, TZ (2010). Hippocampal dysfunction and cognitive impairments provoked by chronic early-life stress involve excessive activation of CRH receptors. Journal of Neuroscience 30, 1300513015.CrossRefGoogle ScholarPubMed
Jeffcoate, WJ, Silverstone, JT, Edwards, CR, Besser, GM (1979). Psychiatric manifestations of Cushing's syndrome: response to lowering of plasma cortisol. Quarterly Journal of Medicine 48, 465472.Google ScholarPubMed
Joels, M, de Kloet, ER (1994). Mineralocorticoid and glucocorticoid receptors in the brain. Implications for ion permeability and transmitter systems. Progress in Neurobiology 43, 136.CrossRefGoogle ScholarPubMed
Kahl, KG, Bens, S, Ziegler, K, Rudolf, S, Dibbelt, L, Kordon, A, Schweiger, U (2006). Cortisol, the cortisol-dehydroepiandrosterone ratio, and pro-inflammatory cytokines in patients with current major depressive disorder comorbid with borderline personality disorder. Biological Psychiatry 59, 667671.CrossRefGoogle ScholarPubMed
Karege, F, Bondolfi, G, Gervasoni, N, Schwald, M, Aubry, JM, Bertschy, G (2005). Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biological Psychiatry 57, 10681072.CrossRefGoogle ScholarPubMed
Karishma, KK, Herbert, J (2002). Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. European Journal of Neuroscience 16, 445453.CrossRefGoogle ScholarPubMed
Kathol, RG, Jaeckle, RS, Lopez, JF, Meller, WH (1989). Pathophysiology of HPA axis abnormalities in patients with major depression: an update. American Journal of Psychiatry 146, 311317.Google ScholarPubMed
Kaufman, J, Yang, BZ, Douglas-Palumberi, H, Grasso, D, Lipschitz, D, Houshyar, S, Krystal, JH, Gelernter, J (2006). Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biological Psychiatry 59, 673680.CrossRefGoogle ScholarPubMed
Kendler, KS, Kuhn, JW, Prescott, CA (2004). Childhood sexual abuse, stressful life events and risk for major depression in women. Psychological Medicine 34, 14751482.CrossRefGoogle ScholarPubMed
Kennedy, SH, Giacobbe, P, Rizvi, SJ, Placenza, FM, Nishikawa, Y, Mayberg, HS, Lozano, AM (2011). Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. American Journal of Psychiatry 168, 502510.CrossRefGoogle ScholarPubMed
Khorram, O, Vu, L, Yen, SS (1997). Activation of immune function by dehydroepiandrosterone (DHEA) in age-advanced men. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 52, M1M7.CrossRefGoogle ScholarPubMed
Kimonides, VG, Khatibi, NH, Svendsen, CN, Sofroniew, MV, Herbert, J (1998). Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proceedings of the National Academy of Sciences USA 95, 18521857.CrossRefGoogle ScholarPubMed
Koenigsberg, HW, Teicher, MH, Mitropoulou, V, Navalta, C, New, AS, Trestman, R, Siever, LJ (2004). 24-h Monitoring of plasma norepinephrine, MHPG, cortisol, growth hormone and prolactin in depression. Journal of Psychiatric Research 38, 503511.CrossRefGoogle ScholarPubMed
Kohler, S, Thomas, AJ, Lloyd, A, Barber, R, Almeida, OP, O'Brien, JT (2010). White matter hyperintensities, cortisol levels, brain atrophy and continuing cognitive deficits in late-life depression. British Journal of Psychiatry 196, 143149.CrossRefGoogle ScholarPubMed
Kunugi, H, Hori, H, Adachi, N, Numakawa, T (2010). Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry and Clinical Neuroscience 64, 447459.CrossRefGoogle ScholarPubMed
Langenecker, SA, Weisenbach, SL, Giordani, B, Briceno, EM, Guidotti Breting, LM, Schallmo, MP, Leon, HM, Noll, DC, Zubieta, JK, Schteingart, DE, Starkman, MN (2012). Impact of chronic hypercortisolemia on affective processing. Neuropharmacology 62, 217225.CrossRefGoogle ScholarPubMed
Lenczowski, MJ, Bluthe, RM, Roth, J, Rees, GS, Rushforth, DA, van Dam, AM, Tilders, FJ, Dantzer, R, Rothwell, NJ, Luheshi, GN (1999). Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. American Journal of Physiology 276, R652R658.Google Scholar
Lewis, DA, Smith, RE (1983). Steroid-induced psychiatric syndromes. A report of 14 cases and a review of the literature. Journal of Affective Disorders 5, 319332.CrossRefGoogle Scholar
Lewis, G, Collishaw, S, Harold, G, Rice, F, Thapar, A (2012). Maternal depression and child and adolescent depression symptoms: an exploratory test for moderation by CRHR1, FKBP5 and NR3C1 gene variants. Behavioral Genetics 42, 121132.CrossRefGoogle ScholarPubMed
Lightman, SL, Conway-Campbell, BL (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nature Reviews Neuroscience 11, 710718.CrossRefGoogle ScholarPubMed
Lightman, SL, Wiles, CC, Atkinson, HC, Henley, DE, Russell, GM, Leendertz, JA, McKenna, MA, Spiga, F, Wood, SA, Conway-Campbell, BL (2008). The significance of glucocorticoid pulsatility. European Journal of Pharmacology 583, 255262.CrossRefGoogle ScholarPubMed
Liston, C, Gan, WB (2011). Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proceedings of the National Academy of Sciences USA 108, 1607416079.CrossRefGoogle ScholarPubMed
Luby, JL, Heffelfinger, A, Mrakotsky, C, Brown, K, Hessler, M, Spitznagel, E (2003). Alterations in stress cortisol reactivity in depressed preschoolers relative to psychiatric and no-disorder comparison groups. Archives of General Psychiatry 60, 12481255.CrossRefGoogle ScholarPubMed
Lupien, SJ, McEwen, BS, Gunnar, MR, Heim, C (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience 10, 434445.CrossRefGoogle ScholarPubMed
Maes, M (2011). Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Progress in Neuropsychopharmacology and Biological Psychiatry 35, 664675.CrossRefGoogle ScholarPubMed
Maes, M, Leonard, BE, Myint, AM, Kubera, M, Verkerk, R (2011). The new ‘5-HT’ hypothesis of depression: cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Progress in Neuropsychopharmacology and Biological Psychiatry 35, 702721.CrossRefGoogle Scholar
Magarinos, AM, McEwen, BS (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 8998.CrossRefGoogle ScholarPubMed
Malberg, JE (2004). Implications of adult hippocampal neurogenesis in antidepressant action. Journal of Psychiatry and Neuroscience 29, 196205.Google ScholarPubMed
Malberg, JE, Eisch, AJ, Nestler, EJ, Duman, RS (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. Journal of Neuroscience 20, 91049110.CrossRefGoogle ScholarPubMed
Mannie, ZN, Harmer, CJ, Cowen, PJ (2007). Increased waking salivary cortisol levels in young people at familial risk of depression. American Journal of Psychiatry 164, 617621.CrossRefGoogle ScholarPubMed
Markopoulou, K, Papadopoulos, A, Juruena, MF, Poon, L, Pariante, CM, Cleare, AJ (2009). The ratio of cortisol/DHEA in treatment resistant depression. Psychoneuroendocrinology 34, 1926.CrossRefGoogle ScholarPubMed
Masters, JN, Finch, CE, Sapolsky, RM (1989). Glucocorticoid endangerment of hippocampal neurons does not involve deoxyribonucleic acid cleavage. Endocrinology 124, 30833088.CrossRefGoogle Scholar
May, M, Holmes, E, Rogers, W, Poth, M (1990). Protection from glucocorticoid induced thymic involution by dehydroepiandrosterone. Life Sciences 46, 16271631.CrossRefGoogle ScholarPubMed
Maya Vetencourt, JF, Sale, A, Viegi, A, Baroncelli, L, De Pasquale, R, O'Leary, OF, Castren, E, Maffei, L (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385388.CrossRefGoogle ScholarPubMed
Mayberg, HS, Lozano, AM, Voon, V, McNeely, HE, Seminowicz, D, Hamani, C, Schwalb, JM, Kennedy, SH (2005). Deep brain stimulation for treatment-resistant depression. Neuron 45, 651660.CrossRefGoogle ScholarPubMed
Mayer, EA, Baldi, JP (1991). Can regulatory peptides be regarded as words of a biological language. American Journal of Physiology 261, G171G184.Google ScholarPubMed
Maywood, ES, O'Neill, J, Wong, GK, Reddy, AB, Hastings, MH (2006). Circadian timing in health and disease. Progress in Brain Research 153, 253269.CrossRefGoogle ScholarPubMed
Maywood, ES, O'Neill, JS, Reddy, AB, Chesham, JE, Prosser, HM, Kyriacou, CP, Godinho, SI, Nolan, PM, Hastings, MH (2007). Genetic and molecular analysis of the central and peripheral circadian clockwork of mice. Cold Spring Harbor Symposia in Quantitative Biology 72, 8594.CrossRefGoogle ScholarPubMed
McGowan, PO, Suderman, M, Sasaki, A, Huang, TC, Hallett, M, Meaney, MJ, Szyf, M (2011). Broad epigenetic signature of maternal care in the brain of adult rats. PLoS ONE 6, e14739.CrossRefGoogle ScholarPubMed
McLaughlin, KA, Nolen-Hoeksema, S (2011). Rumination as a transdiagnostic factor in depression and anxiety. Behavioral Research and Therapy 49, 186193.CrossRefGoogle ScholarPubMed
McMaster, A, Jangani, M, Sommer, P, Han, N, Brass, A, Beesley, S, Lu, W, Berry, A, Loudon, A, Donn, R, Ray, DW (2011). Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS ONE 6, e15766.CrossRefGoogle ScholarPubMed
Meaney, MJ, Szyf, M (2005). Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience 7, 103123.CrossRefGoogle Scholar
Menet, JS, Rosbash, M (2011). When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Current Opinion in Neurobiology 21, 19.CrossRefGoogle ScholarPubMed
Merz, CJ, Tabbert, K, Schweckendiek, J, Klucken, T, Vaitl, D, Stark, R, Wolf, OT (2010). Investigating the impact of sex and cortisol on implicit fear conditioning with fMRI. Psychoneuroendocrinology 35, 3346.CrossRefGoogle ScholarPubMed
Michael, A, Jenaway, A, Paykel, ES, Herbert, J (2000). Altered salivary dehydroepiandrosterone levels in major depression in adults. Biological Psychiatry 48, 989995.CrossRefGoogle ScholarPubMed
Mullen, PE, Linsell, CR, Parker, D (1986). Influence of sleep disruption and calorie restriction on biological markers for depression. Lancet 2, 10511055.CrossRefGoogle ScholarPubMed
Nater, UM, Hoppmann, C, Klumb, PL (2010). Neuroticism and conscientiousness are associated with cortisol diurnal profiles in adults – role of positive and negative affect. Psychoneuroendocrinology 35, 15731577.CrossRefGoogle ScholarPubMed
Nederhof, E, Bouma, EM, Oldehinkel, AJ, Ormel, J (2010). Interaction between childhood adversity, brain-derived neurotrophic factor val/met and serotonin transporter promoter polymorphism on depression: the TRAILS study. Biological Psychiatry 68, 209212.CrossRefGoogle ScholarPubMed
Netherton, C, Goodyer, I, Tamplin, A, Herbert, J (2004). Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology 29, 125140.CrossRefGoogle ScholarPubMed
Newcomer, JW, Selke, G, Melson, AK, Hershey, T, Craft, S, Richards, K, Alderson, AL (1999). Decreased memory performance in healthy humans induced by stress-level cortisol treatment. Archives of General Psychiatry 56, 527533.CrossRefGoogle ScholarPubMed
Nishi, M, Noriko, HH, Kawata, M (2011). Intranuclear dynamics of corticosteroid receptors and effects of proteasomal activity in cultured hippocampal neural cells. Neuroscience Letters 494, 6569.CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S, Wisco, EE, Lynubomirsky, S (2011). Rethinking rumination. Perpectives on Psychological Science 3, 400424.CrossRefGoogle Scholar
Oberlander, TF, Weinberg, J, Papsdorf, M, Grunau, R, Misri, S, Devlin, AM (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3, 97106.CrossRefGoogle ScholarPubMed
O'Brien, JT, Lloyd, A, McKeith, I, Gholkar, A, Ferrier, N (2004). A longitudinal study of hippocampal volume, cortisol levels, and cognition in older depressed subjects. American Journal of Psychology 161, 20812090.CrossRefGoogle ScholarPubMed
O'Regan, D, Welberg, LL, Holmes, MC, Seckl, JR (2001). Glucocorticoid programming of pituitary-adrenal function: mechanisms and physiological consequences. Seminars in Neonatology 6, 319329.CrossRefGoogle ScholarPubMed
Orentreich, N, Brind, JL, Rizer, RL, Vogelman, JH (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism 59, 551555.CrossRefGoogle ScholarPubMed
Orentreich, N, Brind, JL, Vogelman, JH, Andres, R, Baldwin, H (1992). Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. Journal of Clinical Endocrinology and Metabolism 75, 10021004.Google ScholarPubMed
Otte, C, Marmar, CR, Pipkin, SS, Moos, R, Browner, WS, Whooley, MA (2004). Depression and 24-hour urinary cortisol in medical outpatients with coronary heart disease: the Heart and Soul Study. Biological Psychiatry 56, 241247.CrossRefGoogle ScholarPubMed
Ouellet-Morin, I, Boivin, M, Dionne, G, Lupien, SJ, Arseneault, L, Barr, RG, Perusse, D, Tremblay, RE (2008). Variations in heritability of cortisol reactivity to stress as a function of early familial adversity among 19-month-old twins. Archives of General Psychiatry 65, 211218.CrossRefGoogle ScholarPubMed
Oxenkrug, GF (2010). Tryptophan kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Israeli Journal of Psychiatry and Related Sciences 47, 5663.Google ScholarPubMed
Pace, TW, Miller, AH (2009). Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Annals of the New York Academy of Sciences 1179, 86105.CrossRefGoogle ScholarPubMed
Parker, GB, Brown, LB (1982). Coping behaviors that mediate between life events and depression. Archives of General Psychiatry 39, 13861391.CrossRefGoogle ScholarPubMed
Pereira, AM, Tiemensma, J, Romijn, JA (2010). Neuropsychiatric disorders in Cushing's syndrome. Neuroendocrinology 92 (Suppl. 1), 6570.CrossRefGoogle ScholarPubMed
Pezawas, L, Meyer-Lindenberg, A, Drabant, EM, Verchinski, BA, Munoz, KE, Kolachana, BS, Egan, MF, Mattay, VS, Hariri, AR, Weinberger, DR (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience 8, 828834.CrossRefGoogle ScholarPubMed
Pfohl, B, Sherman, B, Schlechte, J, Stone, R (1985). Pituitary-adrenal axis rhythm disturbances in psychiatric depression. Archives of General Psychiatry 42, 897903.CrossRefGoogle ScholarPubMed
Pinnock, SB, Balendra, R, Chan, M, Hunt, LT, Turner-Stokes, T, Herbert, J (2007). Interactions between nitric oxide and corticosterone in the regulation of progenitor cell proliferation in the dentate gyrus of the adult rat. Neuropsychopharmacology 32, 493504.CrossRefGoogle ScholarPubMed
Pinnock, SB, Blake, AM, Platt, NJ, Herbert, J (2010). The roles of BDNF, pCREB and Wnt3a in the latent period preceding activation of progenitor cell mitosis in the adult dentate gyrus by fluoxetine. PLoS ONE 5, e13652.CrossRefGoogle ScholarPubMed
Piser, TM (2010). Linking the cytokine and neurocircuitry hypotheses of depression: a translational framework for discovery and development of novel anti-depressants. Brain, Behavior, and Immunology 24, 515524.CrossRefGoogle ScholarPubMed
Portella, MJ, Harmer, CJ, Flint, J, Cowen, P, Goodwin, GM (2005). Enhanced early morning salivary cortisol in neuroticism. American Journal of Psychiatry 162, 807809.CrossRefGoogle ScholarPubMed
Prickaerts, J, van den Hove, DL, Fierens, FL, Kia, HK, Lenaerts, I, Steckler, T (2006). Chronic corticosterone manipulations in mice affect brain cell proliferation rates, but only partly affect BDNF protein levels. Neuroscience Letters 396, 1216.CrossRefGoogle ScholarPubMed
Qureshi, AC, Bahri, A, Breen, LA, Barnes, SC, Powrie, JK, Thomas, SM, Carroll, PV (2007). The influence of the route of oestrogen administration on serum levels of cortisol-binding globulin and total cortisol. Clinical Endocrinology (Oxford) 66, 632635.CrossRefGoogle ScholarPubMed
Rabkin, JG, McElhiney, MC, Rabkin, R, McGrath, PJ, Ferrando, SJ (2006). Placebo-controlled trial of dehydroepiandrosterone (DHEA) for treatment of nonmajor depression in patients with HIV/AIDS. American Journal of Psychiatry 163, 5966.CrossRefGoogle ScholarPubMed
Reisch, N, Arlt, W (2009). Fine tuning for quality of life: 21st century approach to treatment of Addison's disease. Endocrinology and Metabolism Clinics of North America 38, 407418, ixx.CrossRefGoogle ScholarPubMed
Reul, JM, Gesing, A, Droste, S, Stec, IS, Weber, A, Bachmann, C, Bilang-Bleuel, A, Holsboer, F, Linthorst, AC (2000). The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. European Journal of Pharmacology 405, 235249.CrossRefGoogle ScholarPubMed
Roozendaal, B, McEwen, BS, Chattarji, S (2009). Stress, memory and the amygdala. Nature Reviews Neuroscience 10, 423433.CrossRefGoogle ScholarPubMed
Rosenfeld, P, van Eekelen, JA, Levine, S, de Kloet, ER (1993). Ontogeny of corticosteroid receptors in the brain. Cellular and Molecular Neurobiology 13, 295319.CrossRefGoogle ScholarPubMed
Roskoden, T, Otten, U, Schwegler, H (2004). Early postnatal corticosterone administration regulates neurotrophins and their receptors in septum and hippocampus of the rat. Experimental Brain Research 154, 183191.CrossRefGoogle ScholarPubMed
Rubin, RT, Phillips, JJ, Sadow, TF, McCracken, JT (1995). Adrenal gland volume in major depression. Increase during the depressive episode and decrease with successful treatment. Archives of General Psychiatry 52, 213218.CrossRefGoogle ScholarPubMed
Rush, AJ, Giles, DE, Schlesser, MA, Orsulak, PJ, Parker, CR Jr., Weissenburger, JE, Crowley, GT, Khatami, M, Vasavada, N (1996). The dexamethasone suppression test in patients with mood disorders. Journal of Clinical Psychiatry 57, 470484.CrossRefGoogle ScholarPubMed
Sachar, EJ, Hellman, L, Roffwarg, HP, Halpern, FS, Fukushima, DK, Gallagher, TF (1973). Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Archives of General Psychiatry 28, 1924.CrossRefGoogle ScholarPubMed
Sairanen, M, Lucas, G, Ernfors, P, Castren, M, Castren, E (2005). Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. Journal of Neuroscience 25, 10891094.CrossRefGoogle ScholarPubMed
Salomon, S, Bejar, C, Schorer-Apelbaum, D, Weinstock, M (2011). Corticosterone mediates some but not other behavioural changes induced by prenatal stress in rats. Journal of Neuroendocrinology 23, 118128.CrossRefGoogle Scholar
Santos, GM, Fairall, L, Schwabe, JW (2011). Negative regulation by nuclear receptors: a plethora of mechanisms. Trends in Endocrinology and Metabolism 22, 8793.CrossRefGoogle ScholarPubMed
Sartorius, A, Henn, FA (2007). Deep brain stimulation of the lateral habenula in treatment resistant major depression. Medical Hypotheses 69, 13051308.CrossRefGoogle ScholarPubMed
Schaaf, MJ, de Jong, J, de Kloet, ER, Vreugdenhil, E (1998). Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Research 813, 112120.CrossRefGoogle ScholarPubMed
Schaaf, MJ, Hoetelmans, RW, de Kloet, ER, Vreugdenhil, E (1997). Corticosterone regulates expression of BDNF and trkB but not NT-3 and trkC mRNA in the rat hippocampus. Journal of Neuroscience Research 48, 334341.3.0.CO;2-C>CrossRefGoogle Scholar
Schlesser, MA, Winokur, G, Sherman, BM (1980). Hypothalamic-pituitary-adrenal axis activity in depressive illness. Its relationship to classification. Archives of General Psychiatry 37, 737743.CrossRefGoogle ScholarPubMed
Schmidt, PJ, Daly, RC, Bloch, M, Smith, MJ, Danaceau, MA, St Clair, LS, Murphy, JH, Haq, N, Rubinow, DR (2005). Dehydroepiandrosterone monotherapy in midlife-onset major and minor depression. Archives of General Psychiatry 62, 154162.CrossRefGoogle ScholarPubMed
Schommer, NC, Kudielka, BM, Hellhammer, DH, Kirschbaum, C (1999). No evidence for a close relationship between personality traits and circadian cortisol rhythm or a single cortisol stress response. Psychological Reports 84, 840842.CrossRefGoogle ScholarPubMed
Schulkin, J (2011). Evolutionary conservation of glucocorticoids and corticotropin releasing hormone: behavioral and physiological adaptations. Brain Research 1392, 2746.CrossRefGoogle ScholarPubMed
Seckl, JR, Holmes, MC (2007). Mechanisms of disease: glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nature Clinical Practice in Endocrinology and Metabolism 3, 479488.CrossRefGoogle ScholarPubMed
Shirayama, Y, Chen, AC, Nakagawa, S, Russell, DS, Duman, RS (2002). Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. Journal of Neuroscience 22, 32513261.CrossRefGoogle ScholarPubMed
Simpson, GM, El Sheshai, A, Loza, N, Kingsbury, SJ, Fayek, M, Rady, A, Fawzy, W (2005). An 8-week open-label trial of a 6-day course of mifepristone for the treatment of psychotic depression. Journal of Clinical Psychiatry 66, 598602.CrossRefGoogle ScholarPubMed
Small, SA, Schobel, SA, Buxton, RB, Witter, MP, Barnes, CA (2011). A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nature Reviews Neuroscience 12, 585601.CrossRefGoogle ScholarPubMed
Soravia, LM, de Quervain, DJ, Heinrichs, M (2009). Glucocorticoids do not reduce subjective fear in healthy subjects exposed to social stress. Biological Psychology 81, 184188.CrossRefGoogle Scholar
Soravia, LM, Heinrichs, M, Aerni, A, Maroni, C, Schelling, G, Ehlert, U, Roozendaal, B, de Quervain, DJ (2006). Glucocorticoids reduce phobic fear in humans. Proceedings of the National Academy of Sciences USA 103, 55855590.CrossRefGoogle ScholarPubMed
Srinivasan, V, Singh, J, Pandi-Perumal, SR, Brown, GM, Spence, DW, Cardinali, DP (2010). Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Advances in Therapy 27, 796813.CrossRefGoogle ScholarPubMed
Starkman, MN, Schteingart, DE, Schork, MA (1981). Depressed mood and other psychiatric manifestations of Cushing's syndrome: relationship to hormone levels. Psychosomatic Medicine 43, 318.CrossRefGoogle ScholarPubMed
Steckler, T (2010). Developing small molecule nonpeptidergic drugs for the treatment of anxiety disorders: is the challenge still ahead? Current Topics in Behavioral Neuroscience 2, 415428.CrossRefGoogle ScholarPubMed
Stranahan, AM, Arumugam, TV, Mattson, MP (2011). Lowering corticosterone levels reinstates hippocampal brain-derived neurotropic factor and Trkb expression without influencing deficits in hypothalamic brain-derived neurotropic factor expression in leptin receptor-deficient mice. Neuroendocrinology 93, 5864.CrossRefGoogle ScholarPubMed
Strelzyk, F, Hermes, M, Naumann, E, Oitzl, M, Walter, C, Busch, HP, Richter, S, Schachinger, H (2012). Tune it down to live it up? Rapid, nongenomic effects of cortisol on the human brain. Journal of Neuroscience 32, 616625.CrossRefGoogle ScholarPubMed
Sun, CL, Francisco, L, Baker, KS, Weisdorf, DJ, Forman, SJ, Bhatia, S (2011). Adverse psychological outcomes in long-term survivors of hematopoietic cell transplantation: a report from the Bone Marrow Transplant Survivor Study. Blood 118, 47234731.CrossRefGoogle ScholarPubMed
Szyf, M, Weaver, IC, Champagne, FA, Diorio, J, Meaney, MJ (2005). Maternal programming of steroid receptor expression and phenotype through DNA methylation in the rat. Frontiers in Neuroendocrinology 26, 139162.CrossRefGoogle ScholarPubMed
Tiemensma, J, Biermasz, NR, Middelkoop, HA, van der Mast, RC, Romijn, JA, Pereira, AM (2010). Increased prevalence of psychopathology and maladaptive personality traits after long-term cure of Cushing's disease. Journal of Clinical Endocrinology and Metabolism 95, E129E141.CrossRefGoogle ScholarPubMed
Tombaugh, GC, Yang, SH, Swanson, RA, Sapolsky, RM (1992). Glucocorticoids exacerbate hypoxic and hypoglycemic hippocampal injury in vitro: biochemical correlates and a role for astrocytes. Journal of Neurochemistry 59, 137146.CrossRefGoogle Scholar
Turner, JD, Alt, SR, Cao, L, Vernocchi, S, Trifonova, S, Battello, N, Muller, CP (2010). Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more. Biochemical Pharmacology 80, 18601868.CrossRefGoogle ScholarPubMed
Tyrka, AR, Kelly, MM, Graber, JA, DeRose, L, Lee, JK, Warren, MP, Brooks-Gunn, J (2010). Behavioral adjustment in a community sample of boys: links with basal and stress-induced salivary cortisol concentrations. Psychoneuroendocrinology 35, 11671177.CrossRefGoogle Scholar
Uchida, Y, Ohtsuki, S, Kamiie, J, Terasaki, T (2011). Blood-brain barrier (BBB) pharmacoproteomics (PPx): reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in plasma and brain in mice. Journal of Pharmacology and Experimental Therapeutics 339, 579588.CrossRefGoogle Scholar
Uno, H, Eisele, S, Sakai, A, Shelton, S, Baker, E, DeJesus, O, Holden, J (1994). Neurotoxicity of glucocorticoids in the primate brain. Hormones and Behavoir 28, 336348.CrossRefGoogle ScholarPubMed
van der Meer, MJ, Hermus, AR, Pesman, GJ, Sweep, CG (1996). Effects of cytokines on pituitary beta-endorphin and adrenal corticosterone release in vitro. Cytokine 8, 238247.CrossRefGoogle ScholarPubMed
van der Vegt, EJ, van der Ende, J, Huizink, AC, Verhulst, FC, Tiemeier, H (2010). Childhood adversity modifies the relationship between anxiety disorders and cortisol secretion. Biological Psychiatry 68, 10481054.CrossRefGoogle ScholarPubMed
van Rossum, EF, Russcher, H, Lamberts, SW (2005). Genetic polymorphisms and multifactorial diseases: facts and fallacies revealed by the glucocorticoid receptor gene. Trends in Endocrinology and Metabolism 16, 445450.CrossRefGoogle ScholarPubMed
van Rossum, EF, van den Akker, EL (2011). Glucocorticoid resistance. Endocrine Development 20, 127136.CrossRefGoogle ScholarPubMed
van Santen, A, Vreeburg, SA, Van der Does, AJ, Spinhoven, P, Zitman, FG, Penninx, BW (2011). Psychological traits and the cortisol awakening response: results from the Netherlands Study of Depression and Anxiety. Psychoneuroendocrinology 36, 240248.CrossRefGoogle ScholarPubMed
Veen, G, van Vliet, IM, DeRijk, RH, Giltay, EJ, van Pelt, J, Zitman, FG (2010). Basal cortisol levels in relation to dimensions and DSM-IV categories of depression and anxiety. Psychiatry Research 185, 121128.CrossRefGoogle Scholar
Verhagen, M, van der Meij, A, van Deurzen, PA, Janzing, JG, Arias-Vasquez, A, Buitelaar, JK, Franke, B (2010). Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Molecular Psychiatry 15, 260271.CrossRefGoogle ScholarPubMed
von Zerssen, D, Barthelmes, H, Dirlich, G, Doerr, P, Emrich, HM, von Lindern, L, Lund, R, Pirke, KM (1985). Circadian rhythms in endogenous depression. Psychiatry Research 16, 5163.CrossRefGoogle ScholarPubMed
Vreeburg, SA, Hartman, CA, Hoogendijk, WJ, van Dyck, R, Zitman, FG, Ormel, J, Penninx, BW (2010). Parental history of depression or anxiety and the cortisol awakening response. British Journal of Psychiatry 197, 180185.CrossRefGoogle ScholarPubMed
Wachtel, SR, de Wit, H (2001). Lack of effect of intravenous hydrocortisone on mood in humans: a preliminary study. Behavioral Pharmacology 12, 373376.CrossRefGoogle ScholarPubMed
Watanabe, Y, Gould, E, McEwen, BS (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research 588, 341345.CrossRefGoogle ScholarPubMed
White, T, Ozel, B, Jain, JK, Stanczyk, FZ (2006). Effects of transdermal and oral contraceptives on estrogen-sensitive hepatic proteins. Contraception 74, 293296.CrossRefGoogle ScholarPubMed
Wichers, MC, Myin-Germeys, I, Jacobs, N, Kenis, G, Derom, C, Vlietinck, R, Delespaul, P, Mengelers, R, Peeters, F, Nicolson, N, van Os, J (2008). Susceptibility to depression expressed as alterations in cortisol day curve: a cross-twin, cross-trait study. Psychosomatic Medicine 70, 314318.CrossRefGoogle ScholarPubMed
Wiench, M, John, S, Baek, S, Johnson, TA, Sung, MH, Escobar, T, Simmons, CA, Pearce, KH, Biddie, SC, Sabo, PJ, Thurman, RE, Stamatoyannopoulos, JA, Hager, GL (2011). DNA methylation status predicts cell type-specific enhancer activity. EMBO Journal 30, 30283039.CrossRefGoogle ScholarPubMed
Wirth, MM, Scherer, SM, Hoks, RM, Abercrombie, HC (2011). The effect of cortisol on emotional responses depends on order of cortisol and placebo administration in a within-subject design. Psychoneuroendocrinology 36, 945954.CrossRefGoogle Scholar
Wirz-Justice, A (2006). Biological rhythm disturbances in mood disorders. International Clinical Psychopharmacology 21 (Suppl. 1), S11S15.CrossRefGoogle ScholarPubMed
Wolf, OT, Convit, A, McHugh, PF, Kandil, E, Thorn, EL, De Santi, S, McEwen, BS, de Leon, MJ (2001). Cortisol differentially affects memory in young and elderly men. Behavioral Neuroscience 115, 10021011.CrossRefGoogle Scholar
Wolkowitz, OM, Reus, VI, Keebler, A, Nelson, N, Friedland, M, Brizendine, L, Roberts, E (1999). Double-blind treatment of major depression with dehydroepiandrosterone. American Journal of Psychiatry 156, 646649.CrossRefGoogle ScholarPubMed
Wong, EY, Herbert, J (2004). The corticoid environment: a determining factor for neural progenitors' survival in the adult hippocampus. European Journal of Neuroscience 20, 24912498.CrossRefGoogle ScholarPubMed
Wong, EY, Herbert, J (2006). Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 137, 8392.CrossRefGoogle ScholarPubMed
Yang, S, Liu, A, Weidenhammer, A, Cooksey, RC, McClain, D, Kim, MK, Aguilera, G, Abel, ED, Chung, JH (2009). The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150, 21532160.CrossRefGoogle ScholarPubMed
Young, EA, Carlson, NE, Brown, MB (2001). Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology 25, 267276.CrossRefGoogle ScholarPubMed
Young, EA, Lopez, JF, Murphy-Weinberg, V, Watson, SJ, Akil, H (2003). Mineralocorticoid receptor function in major depression. Archives of General Psychiatry 60, 2428.CrossRefGoogle ScholarPubMed
Young, EA, Nolen-Hoeksema, S (2001). Effect of ruminations on the saliva cortisol response to a social stressor. Psychoneuroendocrinology 26, 319329.CrossRefGoogle ScholarPubMed
Zamudio, SR, Quevedo-Corona, L, Garces, L, De La Cruz, F (2009). The effects of acute stress and acute corticosterone administration on the immobility response in rats. Brain Research Bulletin 80, 331336.CrossRefGoogle ScholarPubMed
Zimmermann, P, Bruckl, T, Nocon, A, Pfister, H, Binder, EB, Uhr, M, Lieb, R, Moffitt, TE, Caspi, A, Holsboer, F, Ising, M (2011). Interaction of FKBP5 gene variants and adverse life events in predicting depression onset: results from a 10-year prospective community study. American Journal of Psychiatry 168, 11071116.CrossRefGoogle ScholarPubMed
Zoccola, PM, Quas, JA, Yim, IS (2010). Salivary cortisol responses to a psychosocial laboratory stressor and later verbal recall of the stressor: the role of trait and state rumination. Stress 13, 435443.CrossRefGoogle ScholarPubMed
Zunszain, PA, Anacker, C, Cattaneo, A, Choudhury, S, Musaelyan, K, Myint, AM, Thuret, S, Price, J, Pariante, CM (2012). Interleukin-1beta: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37, 939949.CrossRefGoogle ScholarPubMed