Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T08:24:04.567Z Has data issue: false hasContentIssue false

2 - The neuropsychology of fear and anxiety: a foundation for Reinforcement Sensitivity Theory

Published online by Cambridge University Press:  31 January 2011

Neil McNaughton
Affiliation:
Professor, University of Otago
Philip J. Corr
Affiliation:
Professor, University of Wales Swansea
Philip J. Corr
Affiliation:
University of Wales, Swansea
Get access

Summary

Personality factors, as normally studied, are sources of variation that are stable over time and that derive from underlying properties of an individual more than current changes in their environment. They account for behavioural differences between individuals presented with identical environments that show consistent patterns within that individual across time. As such, an ultimate goal of personality research must be to identify the relatively static biological variables that determine the superficial factor structure evident in behaviour and other measures. This is not to deny the importance of the environment in controlling personality. But, to produce consistent long-term effects, environmental influences must be mediated by, and instantiated in, biological systems. Biology can also be viewed as more fundamental in that environmental events (such as an impact to the front of the head) have permanent effects on personality not in relation to the external parameters of the event (such as the force of impact) but rather in relation to the precise extent of change the event induces in the brain.

Those interested in individual variation in the tendency to neurotic disorders have been particularly inclined to theorize in terms of either the real or the conceptual nervous system. Pavlov saw variation in the response of his dogs to both traumatic and everyday events as arising from the ‘Strength of the Nervous System’ – a purely theoretical construct, albeit with a consistent behavioural structure (Gray 1964, 1967).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboufatima, R., Chait, A., Dalal, A. and Beaurepaire, R. (1999), Calcitonin microinjection into the periaqueductal gray impairs contextual fear conditioning in the rat, Neuroscience Letters, 275, 101–104CrossRefGoogle ScholarPubMed
An, X., Bandler, R., Öngür, D. and Price, J. L. (1998), Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys, Journal of Comparative Neurology, 401, 455–4793.0.CO;2-6>CrossRefGoogle ScholarPubMed
Andrews, G., Stewart, G., Morris-Yates, A., Holt, P. and Henderson, S. (1990), Evidence for a general neurotic syndrome, British Journal of Psychiatry, 157, 6–12CrossRefGoogle ScholarPubMed
Argyropoulos, S. V., Bell, C. J. and Nutt, D. (2001), Brain function in social anxiety disorder, Psychiatric Clinics of North America, 24, 707–722CrossRefGoogle ScholarPubMed
Audi, E. A., Oliveira, R. M. W. and Graeff, F. G. (1991), Microinjection of propranolol into the dorsal periaqueductal gray causes an anxiolytic effect in the elevated plus-maze antagonized by ritanserin, Psychopharmacology (Berl), 105, 553–557CrossRefGoogle ScholarPubMed
Bandler, R. (1982), Induction of ‘rage’ following microinjections of glutamate into midbrain but not hypothalamus of cats, Neuroscience Letters, 30, 183–188CrossRefGoogle Scholar
Bandler, R., Keay, K. A., Floyd, N. and Price, J. (2000), Central circuits mediating patterned autonomic activity during active vs. passive emotional coping, Brain Research Bulletin, 53, 95–104CrossRefGoogle ScholarPubMed
Bandler, R., Price, J. L. and Keay, K. A. (2000), Brain mediation of active and passive emotional coping, Progress in Brain Research, 122, 331–347Google ScholarPubMed
Bandler, R. and Shipley, M. T. (1994), Columnar organization in the midbrain periaqueductal gray: modules for emotional expression?, Trends in Neuroscience, 17, 379–389CrossRefGoogle ScholarPubMed
Bannerman, D. B., Rawlins, J. N. P., McHugh, S. B., Deacon, R. M. J., Yee, B. K., Bast, T., Zhang, W. -N., Pothuizen, H. H. J. and Feldon, J. (2004), Regional dissociation within the hippocampus: memory and anxiety, Neuroscience and Biobehavioral Reviews, 28, 273–283CrossRefGoogle Scholar
Barch, D. M., Braver, T. S., Akbudak, E., Conturo, T., Ollinger, J. and Snyder, A. (2001), Anterior cingulate cortex and response conflict: effects of response modality and processing domain, Cerebral Cortex, 11, 837–848CrossRefGoogle ScholarPubMed
Berger, T. W., Weikart, C. L., Bassett, J. L. and Orr, W. B. (1986), Lesions of the retrosplenial cortex produce deficits in reversal learning of the rabbit nictitating membrane response: implications for potential interactions between hippocampal and cerebellar brain systems, Behavioral Neuroscience, 100, 802–809CrossRefGoogle ScholarPubMed
Blampied, N. and Kirk, R. C. (1983), Defensive burying: effects of diazepam and oxprenolol measured in extinction, Life Sciences, 33, 695–699CrossRefGoogle ScholarPubMed
Blanchard, D. C. and Blanchard, R. J. (1988), Ethoexperimental approaches to the biology of emotion, Annual Review of Psychology, 39, 43–68CrossRefGoogle ScholarPubMed
Blanchard, D. C. and Blanchard, R. J. (1990), Effects of ethanol, benzodiazepines and serotonin compounds on ethopharmacological models of anxiety in McNaughton, N. and Andrews, G. (eds), Anxiety (Dunedin: Otago University Press), pp. 188–199Google Scholar
Blanchard, D. C., Blanchard, R. J., Tom, P. and Rodgers, R. J. (1990), Diazepam changes risk assessment in an anxiety/defense test battery, Psychopharmacology (Berl), 101, 511–518CrossRefGoogle Scholar
Blanchard, R. J. and Blanchard, D. C. (1989), Antipredator defensive behaviors in a visible burrow system, Journal of Comparative Psychology, 103(1), 70–82CrossRefGoogle Scholar
Blanchard, R. J. and Blanchard, D. C. (1990a), An ethoexperimental analysis of defense, fear and anxiety in McNaughton, N. and Andrews, G. (eds), Anxiety (Dunedin: Otago University Press), pp. 124–133Google Scholar
Blanchard, R. J. and Blanchard, D. C. (1990b), Anti-predator defense as models of animal fear and anxiety in Brain, P. F., Parmigiani, S., Blanchard, R. J. and Mainardi, D. (eds), Fear and Defence (Church Harwood Academic Publishers), pp. 89–108Google Scholar
Blanchard, R. J., Griebel, G., Henrie, J. A. and Blanchard, D. C. (1997), Differentiation of anxiolytic and panicolytic drugs by effects on rat and mouse defense test batteries, Neuroscience and Biobehavioral Reviews, 21, 783–789CrossRefGoogle ScholarPubMed
Blumberg, H. P., Stern, E., Martinez, D., Ricketts, S., Asis, J., White, T., Epstein, J., McBride, P. A., Eidelberg, D., Kocsis, J. H. and Silbersweig, D. A. (2000), Increased anterior cingulate and caudate activity in bipolar mania, Biological Psychiatry, 48, 1045–1052CrossRefGoogle ScholarPubMed
Borst, J. G. G., Leung, L.-W. S. and MacFabe, D. F. (1987), Electrical activity of the cingulate cortex. II, Cholinergic modulation, Brain Research, 407, 81–93CrossRefGoogle ScholarPubMed
Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S. and Cohen, J. D. (1999), Conflict monitoring versus selection-for-action in anterior cingulate cortex, Nature, 402, 179–181CrossRefGoogle ScholarPubMed
Bussey, T. J., Everitt, B. J. and Robbins, T. W. (1997), Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion, Behavioral Neuroscience, 111, 908–919CrossRefGoogle ScholarPubMed
Bussey, T. J., Muir, J. L., Everitt, B. J. and Robbins, T. W. (1996), Dissociable effects of anterior and posterior cingulate cortex lesions on the acquisition of a conditional visual discrimination: facilitation of early learning vs. impairment of late learning, Behavioural Brain Research, 82, 45–56CrossRefGoogle ScholarPubMed
Cahill, L., McGaugh, J. L. and Weinberger, N. M. (2001), The neurobiology of learning and memory: some reminders to remember, Trends in Neurosciences, 24, 578–581CrossRefGoogle Scholar
Canteras, N. S. and Goto, M. (1999), Fos-like immunoreactivity in the periaqueductal gray of rats exposed to a natural predator, Neuroreport, 10, 413–418CrossRefGoogle ScholarPubMed
Canteras, N. S., Simerly, R. B. and Swanson, L. W. (1994), Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat, Journal of Comparative Neurology, 348, 41–79CrossRefGoogle ScholarPubMed
Carrive, P. and Bandler, R. (1991), Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study, Brain Research, 541, 206–215CrossRefGoogle ScholarPubMed
Carrive, P., Leung, P., Harris, J. and Paxinos, G. (1997), Conditioned fear to context is associated with increased fos expression in the caudal ventrolateral region of the midbrain periaqueductal gray, Neuroscience, 78, 165–177CrossRefGoogle ScholarPubMed
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D. and Cohen, J. D. (1998), Anterior cingulate cortex, error detection, and the online monitoring of performance, Science, 280, 747–749CrossRefGoogle Scholar
Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A., Noll, D. and Cohen, J. D. (2000), Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex, Proceedings of the National Academy of Sciences of the United States of America, 97, 1944–1948CrossRefGoogle ScholarPubMed
Chang, C. and Shyu, B. C. (2001), A functional Magnetic Resonance Imaging study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats, Brain Research, 897, 71–81CrossRefGoogle ScholarPubMed
Coghill, R. C., Talbot, J. D., Evans, A. C., Meyer, E., Gjedde, A., Bushnell, M. C. and Duncan, G. H. (1994), Distributed processing of pain and vibration by the human brain, Journal of Neuroscience, 14, 4095–4108CrossRefGoogle ScholarPubMed
Coop, C. F. and McNaughton, N. (1991), Buspirone affects hippocampal rhythmical slow activity through serotonin1A rather than dopamine D2 receptors, Neuroscience, 40, 169–174CrossRefGoogle ScholarPubMed
Coop, C. F., McNaughton, N. and Scott, D. J. (1992), Pindolol antagonizes the effects on hippocampal rhythmical slow activity of clonidine, baclofen and 8-OH-DPAT, but not chlordiazepoxide and sodium amylobarbitone, Neuroscience, 46, 83–90CrossRefGoogle Scholar
Coop, C. F., McNaughton, N., Warnock, K. and Laverty, R. (1990), Effects of ethanol and Ro 15–4513 in an electrophysiological model of anxiolytic action, Neuroscience, 35, 669–674CrossRefGoogle Scholar
Cooper, B. G., Manka, T. F. and Mizumori, S. J. Y. (2001), Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues, Behavioral Neuroscience, 115, 1012–1028CrossRefGoogle ScholarPubMed
Cooper, B. G. and Mizumori, S. J. Y. (1999), Retrosplenial cortex inactivation selectively impairs navigation in darkness, Neuroreport, 10, 625–630CrossRefGoogle ScholarPubMed
Corr, P. J. (2001), Testing problems in J. A. Gray's personality theory: a commentary on Matthews and Gilliland (1999), Personality and Individual Differences, 30, 333–352CrossRefGoogle Scholar
Crestani, F., Lorez, M., Baer, K., Essrich, C., Benke, D., Laurent, J. P., Belzung, C., Fritschy, J. -M., Lüscher, B. and Mohler, H. (1999), Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues, Nature Neuroscience, 2, 833–839CrossRefGoogle Scholar
Davis, K. D. (2000), The neural circuitry of pain as explored with functional MRI, Neurological Research, 22, 313–317CrossRefGoogle ScholarPubMed
Davis, K. D., Wood, M. L., Crawley, A. P. and Mikulis, D. J. (1995), functional Magnetic Resonance Imaging of human somatosensory and cingulate cortex during painful electrical nerve stimulation, Neuroreport, 7, 321–325CrossRefGoogle ScholarPubMed
Davis, M. (1992a), The role of the amygdala in conditioned fear in Aggleton, J. P. (ed.), The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Function (Wiley-Liss Inc.), pp. 255–305Google Scholar
Davis, M.(1992b), The role of the amygdala in fear and anxiety, Annual Review of Neuroscience, 15, 353–375CrossRefGoogle Scholar
Davis, M. and Shi, C. J. (1999), The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety?, Annals of the New York Academy of Sciences, 877, 281–291CrossRefGoogle ScholarPubMed
Souza, M. M., Schenberg, L. C. and Carobrez, A. D. P. (1998), NMDA-coupled periaqueductal gray glycine receptors modulate anxioselective drug effects on plus-maze performance, Behavioural Brain Research, 90, 157–165CrossRefGoogle ScholarPubMed
Deakin, J. F. W. (1999), Making sense of serotonin (5HT) and its role in common psychopathology in Tansella, M. and Thornicroft, G. (eds), Common Mental Disorders in Primary Care: Essays in Honour of Professor Sir David Goldberg (London and New York: Routledge), pp. 17–33Google Scholar
Deakin, J. F. W(2003), Depression and antisocial personality disorder: two contrasting disorders of 5HT function, Journal of Neural Transmission, 64, 79–93CrossRefGoogle Scholar
Deakin, J. F. W. and Graeff, F. G. (1991), 5-HT and mechanisms of defence, Journal of Psychopharmacology, 5, 305–315CrossRefGoogle ScholarPubMed
Degroot, A., Kashluba, S. and Treit, D. (2001), Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests, Pharmacology, Biochemistry and Behavior, 69, 391–399CrossRefGoogle ScholarPubMed
Derbyshire, S. W. G., Vogt, B. A. and Jones, A. K. P (1998), Pain and Stroop interference tasks activate separate processing modules in anterior cingulate cortex, Experimental Brain Research, 118, 52–60CrossRefGoogle ScholarPubMed
Di Chiara, G., Loddo, P. and Tanda, G. (1999), Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression, Biological Psychiatry, 46, 1624–1633CrossRefGoogle Scholar
Diehl, B., Dinner, D. S., Mohamed, A., Najm, I., Klem, G., LaPresto, E., Bingaman, W. and Lüders, H. O. (2000), Evidence of cingulate motor representation in humans, Neurology, 55, 725–728CrossRefGoogle ScholarPubMed
Dougherty, D. D., Shin, L. M., Alpert, N. M., Pitman, R. K., Orr, S. P., Lasko, M., Macklin, M. L., Fischman, A. J. and Rauch, S. L. (1999), Anger in healthy men: a Position Emission Tomography study using script-driven imagery, Biological Psychiatry, 46, 466–472CrossRefGoogle Scholar
Drobes, D. J., Miller, E. J., Hillman, C. H., Bradley, M. M., Cuthbert, B. N. and Lang, P. J. (2001), Food deprivation and emotional reactions to food cues: implications for eating disorders, Biological Psychology, 57, 153–177CrossRefGoogle ScholarPubMed
Ebert, D., Speck, O., Konig, A., Berger, M., Hennig, J. and Hohagen, F. (1997), 1H-magnetic resonance spectroscopy in obsessive-compulsive disorder: evidence for neuronal loss in the cingulate gyrus and the right striatum, Psychiatry Research: Neuroimaging Section, 74, 173–176CrossRefGoogle ScholarPubMed
Eysenck, H. J. (1944), Type of personality: a factorial study of 700 neurotics, Journal of Mental Sciences, 90, 851–861Google Scholar
Eysenck, H. J.(1947), Dimensions of Personality (London: K. Paul Trench Trubner)Google Scholar
Fanselow, M. S. (1991), The midbrain periaqueductal gray as a coordinator of action in response to fear and anxiety in Depaulis, A. and Bandler, R. (eds), The Midbrain Periaqueductal Gray Matter (New York: Plenum Press), pp. 151–173CrossRefGoogle Scholar
Feenstra, B. W. A. and Holsheimer, J. (1979), Dipole-like neuronal sources of theta rhythm in dorsal hippocampus, dentate gyrus and cingulate cortex of the urethane-anesthetized rat, Electroencephalography and Clinical Neurophysiology, 47, 532–538CrossRefGoogle ScholarPubMed
Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A. and Bandler, R. (2000), Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat, Journal of Comparative Neurology, 422, 556–5783.0.CO;2-U>CrossRefGoogle ScholarPubMed
Floyd, N. S., Price, J. L., Ferry, A. T., Keay, K. A. and Bandler, R.(2001), Orbitomedial prefrontal cortical projections to hypothalamus in the rat, Journal of Comparative Neurology, 432, 307–328CrossRefGoogle ScholarPubMed
Francis, S., Rolls, E. T., Bowtell, R., McGlone, F., O'Doherty, J., Browning, A., Clare, S. and Smith, E. (1999), The representation of pleasant touch in the brain and its relationship with taste and olfactory areas, Neuroreport, 10, 453–459CrossRefGoogle ScholarPubMed
Furmark, T., Tillfors, M. and Matteinsdottir, I. (2002), Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive behaviour therapy, Archives of General Psychiatry, 59, 425–433CrossRefGoogle ScholarPubMed
Gabriel, M. (1990), Functions of anterior and posterior cingulate cortex during avoidance learning in rabbits, Progress in Brain Research, 85, 467–483CrossRefGoogle ScholarPubMed
Gentil, V., Lotufo-Neto, F., Andrade, L., Cordás, T., Bernik, M., Ramos, R., Maciel, L., Miyakawa, E. and Gorenstein, C. (1993), Clomipramine, a better reference drug for panic/agoraphobia, I. Effectiveness comparison with imipramine, Journal of Psychopharmacology, 7, 316–324CrossRefGoogle ScholarPubMed
Graeff, F. G. (1994), Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in mammals, Brazilian Journal of Medical and Biological Research, 27, 811–829Google ScholarPubMed
Gray, D. S., Terlecki, L. J., Treit, D. and Pinel, J. P. J. (1981), Effect of septal lesions on conditioned defensive burying, Physiology and Behavior, 27, 1051–1056CrossRefGoogle ScholarPubMed
Gray, J. A. (1964), Pavlov's Typology (Oxford: Pergamon)Google Scholar
Gray, J. A.(1967), Disappointment and drugs in the rat, Advancement of Science, 23, 595–605Google ScholarPubMed
Gray, J. A.(1970), The Psychophysiological basis of introversion–extroversion, Behaviour Research and Therapy, 8, 249–266CrossRefGoogle Scholar
Gray, J. A.(1975), Elements of a Two-Process Theory of Learning (London: Academic Press)Google Scholar
Gray, J. A. (1976), The behavioural inhibition system: a possible substrate for anxiety in Feldman, M. P. and Broadhurst, A. M. (eds), Theoretical and Experimental Bases of Behaviour Modification (London: Wiley), pp. 3–41Google Scholar
Gray, J. A. (1977), Drug effects on fear and frustration: possible limbic site of action of minor tranquilizers in Iversen, L. L., Iversen, S. D. and Snyder, S. H. (eds), Handbook of Psychopharmacology, vol. 8, Drugs, Neurotransmitters and Behaviour (New York: Plenum Press), pp. 433–529CrossRefGoogle Scholar
Gray, J. A.(1982), The Neuropsychology of Anxiety: an Enquiry into the Functions of the Septo-hippocampal System (Oxford: Oxford University Press)Google Scholar
Gray, J. A.(1987), The Psychology of Fear and Stress (London: Cambridge University Press)Google Scholar
Gray, J. A., Feldon, J., Rawlins, J. N. P., Hemsley, D. R. and Smith, A. D. (1991), The Neuropsychology of Schizophrenia, Behavioral and Brain Sciences, 14, 1–20CrossRefGoogle Scholar
Gray, J. A. and McNaughton, N. (1996), The neuropsychology of anxiety: reprise in Hope, D. A. (ed.), Perspectives on Anxiety, Panic and Fear (Nebraska: University of Nebraska Press), pp. 61–134Google Scholar
Gray, J. A. and McNaughton, N.(2000), The Neuropsychology of Anxiety: an Enquiry into the Functions of the Septo-hippocampal System (Oxford: Oxford University Press)Google Scholar
Harkin, A. and Whishaw, I. Q. (2002), Impaired spatial performance in rats with retrosplenial lesions: importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool, Journal of Neuroscience, 22, 1155–1164Google Scholar
Harris, J. A. and Westbrook, R. F. (1995), Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats, Behavioral Neuroscience, 109, 295–304CrossRefGoogle ScholarPubMed
Heidbreder, C. A. and Groenewegen, H. J. (2003), The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics, Neuroscience and Biobehavioral Reviews, 27, 555–579CrossRefGoogle ScholarPubMed
Hinde, R. A. (1966), Animal Behaviour (New York: McGraw-Hill Book Company)Google Scholar
Hirono, N., Mori, E., Ishii, K., Ikejiri, Y., Imamura, T., Shimomura, T., Hashimoto, M., Yamashita, H. and Sasaki, M. (1998), Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer's disease, Journal of Neurology, Neurosurgery, and Psychiatry, 64, 552–554CrossRefGoogle ScholarPubMed
Holstege, G. (1989), Anatomical study of the final common pathway for vocalization in the cat, Journal of Comparative Neurology, 284, 242–252CrossRefGoogle ScholarPubMed
Ikemoto, S. and Panksepp, J. (1999), The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking, Brain Research Reviews, 31, 6–41CrossRefGoogle ScholarPubMed
Ishii, K., Sasaki, M., Yamaji, S., Sakamoto, S., Kitagaki, H. and Mori, E. (1997), Demonstration of decreased posterior cingulate perfusion in mild Alzheimer's disease by means of H215 O positron emission tomography, European Journal of Nuclear Medicine, 24, 670–673CrossRefGoogle Scholar
Joyce, E. M., Rio, D. E., Ruttimann, U. E., Rohrbaugh, J. W., Martin, P. R., Rawlings, R. R. and Eckardt, M. J. (1994), Decreased cingulate and precuneate glucose utilization in alcoholic Korsakoff's syndrome, Psychiatry Research, 54, 225–239CrossRefGoogle ScholarPubMed
Kask, A., Rägo, L. and Harro, J. (1998), NPY Y1 receptors in the dorsal periaqueductal gray matter regulate anxiety in the social interaction test, Neuroreport, 9, 2713–2716CrossRefGoogle ScholarPubMed
Katayama, K., Takahashi, N., Ogawara, K. and Hattori, T. (1999), Pure topographical disorientation due to right posterior cingulate lesion, Cortex, 35, 279–282CrossRefGoogle ScholarPubMed
Keay, K. A. and Bandler, R. (2002), Parallel circuits mediating distinct emotional coping reactions to different types of stress, Neuroscience and Biobehavioral Reviews, 25, 669–678CrossRefGoogle Scholar
Kendler, K. S., Prescott, C. A., Myers, J. and Neale, M. C. (2003), The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women, Archives of General Psychiatry, 60, 929–937CrossRefGoogle ScholarPubMed
Kermadi, I., Liu, Y. and Rouiller, E. M. (2000), Do bimanual motor actions involve the dorsal premotor (PMd), cingulate (CMA) and posterior parietal (PPC) cortices? Comparison with primary and supplementary motor cortical areas, Somatosensory and Motor Research, 17, 255–271CrossRefGoogle ScholarPubMed
Kimble, G. A. (1961), Hilgard and Marquis' Conditioning and Learning (New York: Appleton-Century-Crofts)Google Scholar
Knight, D. C., Smith, C. N., Stein, E. A. and Helmstetter, F. J. (1999), Functional MRI of human Pavlovian fear conditioning: patterns of activation as a function of learning, Neuroreport, 10, 3665–3670CrossRefGoogle Scholar
Koyama, T., Tanaka, Y. Z. and Mikami, A. (1998), Nociceptive neurons in the macaque anterior cingulate activate during anticipation of pain, Neuroreport, 9, 2663–2667CrossRefGoogle Scholar
Kubota, Y., Wolske, M., Poremba, A., Kang, E. and Gabriel, M. (1996), Stimulus-related and movement-related single-unit activity in rabbit cingulate cortex and limbic thalamus during performance of discriminative avoidance behavior, Brain Research, 721, 22–38CrossRefGoogle ScholarPubMed
Kwan, C. L., Crawley, A. P., Mikulis, D. J. and Davis, K. D. (2000), An functional Magnetic Resonance Imaging study of the anterior cingulate cortex and surrounding medial wall activations evoked by noxious cutaneous heat and cold stimuli, Pain, 85, 359–374CrossRefGoogle ScholarPubMed
LeDoux, J. E. (1994), Emotion, memory and the brain, Scientific American, 270, 50–59CrossRefGoogle Scholar
Liebman, J. M., Mayer, D. J. and Liebeskind, J. C. (1970), Mesencephalic central gray lesions and fear-motivated behavior in rats, Brain Research, 23, 353–370CrossRefGoogle ScholarPubMed
MacDonald, A. W. III, Cohen, J. D., Stenger, V. A. and Carter, C. S. (2000), Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control, Science, 288, 1835–1838CrossRefGoogle ScholarPubMed
Maddock, R. J. and Buonocore, M. H. (1997), Activation of left posterior cingulate gyrus by the auditory presentation of threat-related words: an functional Magnetic Resonance Imaging study, Psychiatry Research: Neuroimaging Section, 75, 1–14CrossRefGoogle Scholar
Maddock, R. J., Garrett, A. S. and Buonocore, M. H. (2002), Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval, Neuroscience, 104, 667–676CrossRefGoogle Scholar
Marks, I. M., Birley, J. L. T. and Gelder, M. G. (1966), Modified leucotomy in severe agoraphobia: a controlled serial inquiry, British Journal of Psychiatry, 112, 757–769CrossRefGoogle ScholarPubMed
Matheus, M. G. and Guimaraes, F. S. (1997), Antagonism of non-NMDA receptors in the dorsal periaqueductal grey induces anxiolytic effect in the elevated plus maze, Psychopharmacology (Berl), 132, 14–18CrossRefGoogle ScholarPubMed
Matheus, M. G., Nogueira, R. L., Carobrez, A. P., Graeff, F. G. and Guimaraes, F. S. (1994), Anxiolytic effect of glycine antagonists microinjected into the dorsal periaqueductal grey, Psychopharmacology (Berl), 113, 565–569CrossRefGoogle ScholarPubMed
McNaughton, N. (1989), Biology and Emotion (Cambridge: Cambridge University Press)CrossRefGoogle Scholar
McNaughton, N. (1993), Stress and behavioural inhibition in Stanford, S. C. and Salmon, P. (eds), Stress: an Integrated Approach (Academic Press), pp. 191–206Google Scholar
McNaughton, N.(1997), Cognitive dysfunction resulting from hippocampal hyperactivity: a possible cause of anxiety disorder, Pharmacology, Biochemistry and Behavior, 56, 603–611CrossRefGoogle ScholarPubMed
McNaughton, N. (2001), Approach-avoidance conflict in Craighead, W. E. and Nemeroff, C. B. (eds), The Corsini Encyclopedia of Psychology and Behavioral Science (New York: John Wiley and Sons), pp. 126–127Google Scholar
McNaughton, N. (2002), Aminergic transmitter systems in D'haenen, H., Boer, J. A., Westenberg, H. and Willner, P. (eds), Textbook of Biological Psychiatry (John Wiley and Sons), pp. 895–914CrossRefGoogle Scholar
McNaughton, N. and Coop, C. F. (1991), Neurochemically dissimilar anxiolytic drugs have common effects on hippocampal rhythmic slow activity, Neuropharmacology, 30, 855–863CrossRefGoogle ScholarPubMed
McNaughton, N. and Corr, P. J. (2004), A two-dimensional neuropsychology of defense: fear/anxiety and defensive distance, Neuroscience and Biobehavioral Reviews, 28, 285–305CrossRefGoogle ScholarPubMed
McNaughton, N. and Gray, J. A. (1983), Pavlovian counterconditioning is unchanged by chlordiazepoxide or by septal lesions, Quarterly Journal of Experimental Psychology, 35B, 221–233CrossRefGoogle Scholar
McNaughton, N. and Mason, S. T. (1980), The neuropsychology and neuropharmacology of the dorsal ascending noradrenergic bundle: a review, Progress in Neurobiology, 14, 157–219CrossRefGoogle ScholarPubMed
McNaughton, N. and Morris, R. G. M. (1987), Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats, Behavioural Brain Research, 24, 39–46CrossRefGoogle ScholarPubMed
McNaughton, N. and Morris, R. G. M(1992), Buspirone produces a dose-related impairment in spatial navigation, Pharmacology, Biochemistry and Behavior, 43, 167–171CrossRefGoogle ScholarPubMed
McNish, K. A., Gewirtz, J. C. and Davis, M. (1997), Evidence of contextual fear after lesions of the hippocampus: a disruption of freezing but not fear-potentiated startle, Journal of Neuroscience, 17, 9353–9360CrossRefGoogle Scholar
Melia, K. R., Ryabinin, A. E., Corodimas, K. P., Wilson, M. C. and LeDoux, J. E. (1996), Hippocampal-dependent learning and experience-dependent activation of the hippocampus are preferentially disrupted by ethanol, Neuroscience, 74, 313–322CrossRefGoogle ScholarPubMed
Menard, J. and Treit, D. (1996a), Does tolerance develop to the anxiolytic effects of septal lesions, Physiology and Behavior, 59, 311–318CrossRefGoogle Scholar
Menard, J. and Treit, D.(1996b), Lateral and medial septal lesions reduce anxiety in the plus-maze and probe-burying tests, Physiology and Behavior, 60, 845–853CrossRefGoogle Scholar
Menard, J. and Treit, D.(1999), Effects of centrally administered anxiolytic compounds in animal models of anxiety, Neuroscience and Biobehavioral Reviews, 23, 591–613CrossRefGoogle ScholarPubMed
Meunier, M. and Destrade, C. (1997), Effects of radiofrequency versus neurotoxic cingulate lesions on spatial reversal learning in mice, Hippocampus, 7, 355–3603.0.CO;2-I>CrossRefGoogle ScholarPubMed
Milani, H. and Graeff, F. G. (1987), GABA-Benzodiazepine modulation of aversion in the medial hypothalamus of the rat, Pharmacology, Biochemistry and Behavior, 28, 21–27CrossRefGoogle ScholarPubMed
Miller, N. E. (1944), Experimental studies of conflict in Hunt, J. M. (ed.), Personality and the Behavioural Disorders (New York: Ronald), pp. 431–465.Google Scholar
Milne, E. and Grafman, J. (2001), Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping, Journal of Neuroscience, 21, NIL1–NIL6CrossRefGoogle ScholarPubMed
Minoshima, S., Foster, N. L. and Kuhl, D. E. (1994), Posterior cingulate cortex in Alzheimer's disease, Lancet, 344, 895–895CrossRefGoogle ScholarPubMed
Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L. and Kuhl, D. E. (1997), Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease, Annals of Neurology, 42, 85–94CrossRefGoogle ScholarPubMed
Money, E. A., Kirk, R. C. and McNaughton, N. (1992), Alzheimer's dementia produces a loss of discrimination but no increase in rate of memory decay in delayed matching to sample, Neuropsychologia, 30, 133–145CrossRefGoogle ScholarPubMed
Murray, E. A., Davidson, M., Gaffan, D., Olton, D. S. and Suomi, S. (1989), Effects of fornix transection and cingulate cortical ablation on spatial memory in rhesus monkeys, Experimental Brain Research, 74, 173–186.CrossRefGoogle ScholarPubMed
Neave, N., Lloyd, S., Sahgal, A. and Aggleton, J. P. (1994), Lack of effect of lesions in the anterior cingulate cortex and retrosplenial cortex on certain tests of spatial memory in the rat, Behavioural Brain Research, 65, 89–101CrossRefGoogle ScholarPubMed
Neave, N., Nagle, S., Sahgal, A. and Aggleton, J. P.(1996), The effects of discrete cingulum bundle lesions in the rat on the acquisition and performance of two tests of spatial working memory, Behavioural Brain Research, 80, 75–85CrossRefGoogle ScholarPubMed
Nutt, D., Bell, C. J. and Malizia, A. L. (1998), Brain mechanisms of social anxiety disorder, Journal of Clinical Psychiatry, 59, 4–9Google ScholarPubMed
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. and Andrews, C. (2001), Abstract reward and punishment representations in the human orbitofrontal cortex, Nature Neuroscience, 4, 95–102CrossRefGoogle ScholarPubMed
Ochsner, K. N., Kosslyn, S. M., Cosgrove, G. R., Cassem, E. H., Price, B. H., Nierenberg, A. A. and Rauch, S. L. (2001), Deficits in visual cognition and attention following bilateral anterior cingulotomy, Neuropsychologia, 39, 219–230CrossRefGoogle ScholarPubMed
Okaichi, Y. and Okaichi, H. (1994), Effects of fimbria-fornix lesions on avoidance tasks with temporal elements in rats, Physiology and Behavior, 56, 759–765CrossRefGoogle ScholarPubMed
Pan, W .-X. and McNaughton, N. (1997), The medial supramammillary nucleus, spatial learning and the frequency of hippocampal theta activity, Brain Research, 764, 101–108CrossRefGoogle ScholarPubMed
Pan, W. -X. and McNaughton, N.(2004), The supramammillary area: its organization, functions and relationship to the hippocampus, Progress in Neurobiology, 74, 127–166CrossRefGoogle ScholarPubMed
Parkinson, J. A., Willoughby, P. J., Robbins, T. W. and Everitt, B. J. (2000), Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behavior: further evidence for limbic cortical-ventral striatopallidal systems, Behavioral Neuroscience, 114, 42–63CrossRefGoogle ScholarPubMed
Peterson, B. S., Skudlarski, P., Gatenby, J. C., Zhang, H. P., Anderson, A. W. and Gore, J. C. (1999), An functional Magnetic Resonance Imaging study of Stroop word-color interference: evidence for cingulate subregions subserving multiple distributed attentional systems, Biological Psychiatry, 45, 1237–1258CrossRefGoogle ScholarPubMed
Poucet, B. (1997), Searching for spatial unit firing in the prelimbic area of the rat medial prefrontal cortex, Behavioural Brain Research, 84, 151–159CrossRefGoogle ScholarPubMed
Powell, G. E. (1981), A survey of the effects of brain lesions upon personality in Eysenck, H. J. (ed.), A Model for Personality (Springer-Verlag), pp. 65–87CrossRefGoogle Scholar
Pratt, W. E. and Mizumori, S. J. Y. (2001), Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task, Behavioural Brain Research, 123, 165–183CrossRefGoogle Scholar
Procyk, E. and Josephy, J. P. (2001), Characterization of serial order encoding in the monkey anterior cingulate sulcus, European Journal of Neuroscience, 14, 1041–1046CrossRefGoogle ScholarPubMed
Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. and Bushnell, M. C. (1997), Pain affect encoded in human anterior cingulate but not somatosensory cortex, Science, 277, 968–971CrossRefGoogle Scholar
Rapoport, J. L. (1989), The biology of obsessions and compulsions, Scientific American, 63–69Google ScholarPubMed
Reinvang, I., Magnussen, S., Greenlee, M. W. and Larsson, P. G. (1998), Electrophysiological localization of brain regions involved in perceptual memory, Experimental Brain Research, 123, 481–484CrossRefGoogle ScholarPubMed
Riekkinen, P. Jr, Kuitunen, J. and Riekkinen, M. (1995), Effects of scopolamine infusions into the anterior and posterior cingulate on passive avoidance and water maze navigation, Brain Research, 685, 46–54CrossRefGoogle ScholarPubMed
Rilling, J. K., Winslow, J. T., O'Brien, D., Gutman, D. A., Hoffman, J. M. and Kilts, C. D. (2001), Neural correlates of maternal separation in Rhesus monkeys, Biological Psychiatry, 49, 146–157CrossRefGoogle ScholarPubMed
Risold, P. Y. and Swanson, L. W. (1996), Structural evidence for functional domains in the rat hippocampus, Science, 272, 1484–1486CrossRefGoogle ScholarPubMed
Rizvi, T. A., Ennis, M., Behbehani, M. M. and Shipley, M. T. (1991), Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity, Journal of Comparative Neurology, 303, 121–131CrossRefGoogle ScholarPubMed
Sanderson, W. C., Wetzler, S. and Asnis, G. M. (1994), Alprazolam blockade of CO2-provoked panic in patients with panic disorder, American Journal of Psychiatry, 151, 1220–1222Google ScholarPubMed
Sartory, G., MacDonald, R. and Gray, J. A. (1990), Effects of diazepam on approach, self-reported fear and psychophysological responses in snake phobics, Behaviour Research and Therapy, 28, 273–282CrossRefGoogle Scholar
Scherrer, J. F., True, W. R., Xian, H., Lyons, M. J., Eisen, S. A., Goldberg, J., Lin, N. and Tsuang, M. T. (2000), Evidence for genetic influences common and specific to symptoms of generalized anxiety and panic, Journal of Affective Disorders, 57, 25–35CrossRefGoogle ScholarPubMed
Shin, L. M., Dougherty, D. D., Orr, S. P., Pitman, R. K., Lasko, M., Macklin, M. L., Alpert, N. M., Fischman, A. J. and Rauch, S. L. (2000), Activation of anterior paralimbic structures during guilt-related script-driven imagery, Biological Psychiatry, 48, 43–50CrossRefGoogle ScholarPubMed
Shipley, M. T., Ennis, M., Rizvi, T. A. and Behbehani, M. M. (1991), Topographical specificity of forebrain inputs to the midbrain periaqueductal gray: evidence for discrete longitudinally organized input columns in Depaulis, A. and Bandler, R. (eds), The Midbrain Periaqueductal Gray Matter (New York: Plenum Press), pp. 417–448CrossRefGoogle Scholar
Simpson, J. R. Jr, Drevets, W. C., Snyder, A. Z., Gusnard, D. A. and Raichle, M. E.(2001), Emotion-induced changes in human medial prefrontal cortex, II. During anticipatory anxiety, Proceedings of the National Academy of Sciences of the United States of America, 98, 688–693CrossRefGoogle ScholarPubMed
Simpson, J. R. Jr, Snyder, A. Z., Gusnard, D. A. and Raichle, M. E. (2001), Emotion-induced changes in human medial prefrontal cortex, I. During cognitive task performance, Proceedings of the National Academy of Sciences of the United States of America, 98, 683–687CrossRefGoogle ScholarPubMed
Stein, D. J., Vythilingum, B. and Seedat, S. (2004) Pharmacotherapy of phobias: a review, ch. 3, in Maj, M., Akiskal, H. S., López-Ibor, J. J. and Okasha, A. (eds), Evidence and Experience in Psychiatry, vol. 7 PhobiasGoogle Scholar
Sutherland, R. J., Whishaw, I. Q. and Kolb, B. (1988), Contributions of cingulate cortex to two forms of spatial learning and memory, Journal of Neuroscience, 8(6), 1863–1872CrossRefGoogle ScholarPubMed
Swanson, L. W. and Petrovich, G. D. (1998), What is the amygdala?, Trends in Neurosciences, 21, 323–331CrossRefGoogle ScholarPubMed
Takenouchi, K., Nishijo, H., Uwano, T., Tamura, R., Takigawa, M. and Ono, T. (1999), Emotional and behavioral correlates of the anterior cingulate cortex during associative learning in rats, Neuroscience, 93, 1271–1287CrossRefGoogle ScholarPubMed
Tan, S., Kirk, R. C., Abraham, W. C. and McNaughton, N. (1989), Effects of the NMDA antagonists, CPP and MK-801 on delayed conditional discrimination, Psychopharmacology, 98, 556–560CrossRefGoogle ScholarPubMed
Tan, S., Kirk, R. C., Abraham, W. C. and McNaughton, N.(1990), Chlordiazepoxide reduces discriminability but not rate of forgetting in delayed conditional discrimination, Psychopharmacology, 101, 550–554CrossRefGoogle Scholar
Towe, A. L. and Luschei, E. S. (1981), Preface in Towe, A. L. and Luschei, E. S. (eds), Motor Coordination (New York: Plenum Press), pp. vii–viiiCrossRefGoogle Scholar
Treit, D. and Fundytus, M. (1988), A comparison of buspirone and chlordiazepoxide in the shock-probe/burying test for anxiolytics, Pharmacology, Biochemistry and Behavior, 30, 1071–1075CrossRefGoogle ScholarPubMed
Treit, D., Robinson, A., Rotzinger, S. and Pesold, C. (1993), Anxiolytic effects of serotonergic interventions in the shock-probe burying test and the elevated plus mase, Behavioural Brain Research, 54, 23–34CrossRefGoogle Scholar
Linden, G., Heerden, B. and Warwick, J. (2000), Functional brain imaging and pharmacotherapy in social phobia: single photon emission computed tomography before and after treatment with the selective serotoninreuptake inhibitor citalopram, Progress in Neuropsychopharmacology and Biological Psychiatry, 24, 419–438CrossRefGoogle ScholarPubMed
Veening, J., Buma, P., Ter Horst, G. J., Roeling, T. A. P., Luiten, P. G. M. and Nieuwenhuys, R. (1991), Hypothalamic projections to the periaqueductal gray in the rat: topographical, immuno-electronmicroscopical and function aspects in Depaulis, A. and Bandler, R. (eds), The Midbrain Periaqueductal Gray Matter (New York: Plenum Press), pp. 387–415CrossRefGoogle Scholar
Wang, Z., Valdes, J., Noyes, R., Zoega, T. and Crowe, R. R. (1998a), Possible association of a cholecystokinin promotor polymorphism (CCK-36CT) with panic disorder, American Journal of Medical Genetics, 81, 228–2343.0.CO;2-S>CrossRefGoogle Scholar
Wang, Z. W., Valdes, J., Noyes, R., Zoega, T. and Crowe, R. R.(1998b), Possible association of a cholecystokinin promotor polymorphism (CCK-36CT) with panic disorder, American Journal of Medical Genetics, 81, 228–2343.0.CO;2-S>CrossRefGoogle Scholar
Warburton, E. C., Aggleton, J. P. and Muir, J. L. (1998), Comparing the effects of selective cingulate cortex lesions and cingulum bundle lesions on water maze performance by rats, European Journal of Neuroscience, 10, 622–634CrossRefGoogle ScholarPubMed
Watanabe, M., Hikosaka, K., Sakagami, M. and Shirakawa, S. (2002), Coding and monitoring of motivational context in the primate prefrontal cortex, Journal of Neuroscience, 22, 2391–2400CrossRefGoogle ScholarPubMed
Whalen, P. J., Bush, G., McNally, R. J., Wilhelm, S., McInerney, S. C., Jenike, M. A. and Rauch, S. L. (1998), The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division, Biological Psychiatry, 44, 1219–1228CrossRefGoogle ScholarPubMed
Wheatley, D. (1982), Buspirone: multicenter efficacy study, Journal of Clinical Psychiatry, 43(12), 92–94Google ScholarPubMed
Wheatley, D. (1990), The new alternatives in Wheatley, D. (ed.), In the Anxiolytic Jungle: Where Next? (Chichester: John Wiley), pp. 163–184Google Scholar
Woo, T. U., Pucak, M. L., Kye, C. H., Matus, C. V. and Lewis, D. A. (1997), Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex, Neuroscience, 80, 1149–1158CrossRefGoogle ScholarPubMed
Woodnorth, M. -A. and McNaughton, N. (2002), Similar effects of medial supramammillary or systemic injections of chlordiazepoxide on both theta frequency and fixed-interval responding, Cognitive, Affective, and Behavioral Neuroscience, 2, 76–83CrossRefGoogle ScholarPubMed
Zhang, L. and Barrett, J. E. (1990), Interactions of corticotropin-releasing factor with antidepressant and anxiolytic drugs: Behavioural studies with pigeons, Biological Psychiatry, 27(9), 953–967CrossRefGoogle ScholarPubMed
Zhu, X.-O. and McNaughton, N. (1991a), Effects of long-term administration of anxiolytics on reticular-elicited hippocampal rhythmical slow activity, Neuropharmacology, 30, 1095–1099Google Scholar
Zhu, X. -O. and McNaughton, N.(1991b), Effects of long-term administration of imipramine on reticular-elicited hippocampal rhythmical slow activity, Psychopharmacology, 105, 433–438CrossRefGoogle Scholar
Zhu, X. -O. and McNaughton, N.(1994a), A comparison of the acute effects of a tricyclic and a MAOI antidepressant on septal driving of hippocampal rhythmical slow activity, Psychopharmacology (Berl), 114, 337–344CrossRefGoogle Scholar
Zhu, X. -O. and McNaughton, N.(1994b), Effects of long-term administration of antidepressants on septal driving of hippocampal RSA, International Journal of Neuroscience, 79, 91–98CrossRefGoogle Scholar
Zhu, X. -O. and McNaughton, N.(1994c), The interaction of serotonin depletion with anxiolytics and antidepressants on reticular-elicited hippocampal RSA, Neuropharmacology, 33, 1597–1605CrossRefGoogle Scholar
Zhu, X. -O. and McNaughton, N.(1995a), Minimal changes with long-term administration of anxiolytics on septal driving of hippocampal rhythmical slow activity, Psychopharmacology (Berl), 118, 93–100CrossRefGoogle Scholar
Zhu, X. -O. and McNaughton, N.(1995b), Effects of long-term administration of phenelzine on reticular-elicited hippocampal rhythmical slow activity, Neuroscience Research, 21, 311–316CrossRefGoogle Scholar
Zhu, X. -O. and McNaughton, N.(1995c), Similar effects of buspirone and chlordiazepoxide on a fixed interval schedule with long-term, low-dose administration, Journal of Psychopharmacology, 9, 326–330CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×