Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-04T14:19:07.755Z Has data issue: false hasContentIssue false

17 - Neurobiology of Personality Disorders: Implications for a Neurodevelopmental Model

Published online by Cambridge University Press:  10 August 2009

Larry J. Siever
Affiliation:
Department of Psychiatry, Mount Sinai School of Medicine
Harold W. Koenigsberg
Affiliation:
Department of Psychiatry, Mount Sinai School of Medicine
Deidre Reynolds
Affiliation:
Department of Psychiatry, Mount Sinai School of Medicine
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

The study of the neurobiology of personality disorders represents a unique opportunity to understand the interactions of genetics and environment with respect to the emergence of the persistent behavioral patterns and coping strategies that we label personality. In personality disorders such as schizotypal personality disorder or borderline personality disorder, temperamental vulnerabilities interacting with early and late environmental events may account for the constellation of behaviors that constitute the criteria for these disorders. In this chapter, the neurobiology of these two prototypic personality disorders will be reviewed in the context of the limited available evidence to examine how their underlying neurobiology unfolds in the context of the development of psychologic structures and behavior associated with personality.

The personality disorders constitute a level of pathology in between the persistent and chronic Axis I disorders, such as schizophrenia, and milder personality variations within the normal range. For this reason, they constitute an ideal set of disorders to evaluate individual differences and how individual differences in neurobiology translate into different patterns of psychopathology and behavioral traits. Genetic factors may “set” the initial susceptibility to these behavioral patterns that develop in the context of early intrauterine influences as well as early interactions with caretakers.

In order for a neurobiologic model to have heuristic value in generating new investigative approaches as well as contributing significantly to clinical work, the temperamental/behavioral traits to be studied need to be grounded in core psychobiologic domains such as affect regulation, cognitive organization, modulation of aggression, and anxiety (Siever & Davis, 1991).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amin, F., Siever, L. J., Silverman, J. M., et al. (1997). Plasma HVA in schizotypal personality disorder. In A. J. Friedhoff & F. Amin (Eds.), Plasma homovanillic acid studies in schizophrenia, implications of presynaptic dopamine dysfunction (pp. 133–149). Washington, D.C.: American Psychiatric Press Progress in Psychiatry Series
Asberg, M., Traskman, L., & Thoren, P. (1976). 5-HIAA in the cerebrospinal fluid: A biochemical suicide predictor? Archives of General Psychiatry, 33, 1193–1197CrossRefGoogle ScholarPubMed
Avissar, S., & Schreiber, G. (1992). The involvement of guanine nucleotide binding proteins in the pathogenesis and treatment of affective disorders. Biological Psychiatry, 31, 435–459CrossRefGoogle ScholarPubMed
Bergman, A. J., Harvey, P. D., Lees-Roitman, S., Mohs, R. C., Marder, D., Silverman, J. M., & Siever, L. J. (1998). Verbal learning and memory in schizotypal personality disorder. Schizophrenia Bulletin, 24(4), 635–641CrossRefGoogle ScholarPubMed
Brazelton, T. B. (1978). The Brazelton Neonatal Behavior Assessment Scale: introduction. Monogr Soc Res Child Dev, 43 (5–6), 1–13CrossRefGoogle ScholarPubMed
Breier, A., Su, T. P., Saunders, R.. (1997). Schizophrenia is associated with elevated amphetamine induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA, 94, 2569–2574CrossRefGoogle ScholarPubMed
Brezun, J. M., & Daszulta, A. (1999). Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience, 89, 999–1002CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Trestman, R. L., Hazlett, E., Siegel, Jr., B. V., Schaefer, C. H., Luu-Hsia, C., Tang, C., Herrera, S., Solimando, A. C., Losonczy, M., Serby, M., Silverman, J., & Siever, L. J. (1997). Regional cerebral blood flow during the Wisconsin Card Sort Test in schizotypal personality disorder. Schizophrenia Research, 27, 21–28CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Yang, S., Hazlett, E., et al. (1997). Ventricular volume and asymmetry in schizotypal personality disorder and schizophrenia assessed with magnetic resonance imaging. Schizophrenia Research, 27, 45–53CrossRefGoogle ScholarPubMed
Burmeister, M. (1999). Basic concepts in the study of diseases with complex genetics. Biological Psychiatry, 45, 522–532CrossRefGoogle Scholar
Coccaro, E. F. (1998). Neurotransmitter function in personality disorders. In K. R. Silk (ed.), Biology of Personality Disorders. Washington, D.C.: American Psychiatric Press
Coccaro, E. F., Bergeman, C. S., & McClearn, G. E. (1993). Heritability of irritable impulsiveness: A study of twins reared together and apart. Psychiatry Research, 48, 229–242CrossRefGoogle ScholarPubMed
Coccaro, E. F., Gabriel, S., & Siever, L. J. (1990). Buspirone challenge: Preliminary evidence for a role for 5HT1a receptors in impulsive aggressive behavior in humans. Psychopharmacology Bulletin, 26, 393–405Google Scholar
Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., & Ferris, C. F. (1998). Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry, 55, 708–714CrossRefGoogle ScholarPubMed
Coccaro, E. F., Lawrence, T., Trestman, R., Gabriel, S., Klar, H. M., & Siever, L. J. (1991). Growth hormone responses to intravenous clonidine challenge correlates with behavioral irritability in psychiatric patients and healthy controls. Psychiatry Research, 39, 129–139CrossRefGoogle Scholar
Coccaro, E. F., Siever, L. J., Klar, H. M., et al. (1989). Serotonergic studies in affective and personality disorders: correlates with suicidal and impulsive aggressive behavior. Archives of General Psychiatry, 46, 587–599CrossRefGoogle ScholarPubMed
Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine and schizophrenia: a reconceptualization. American Journal of Psychiatry, 148, 1474–1486Google ScholarPubMed
Dickey, C. C., McCarley, R. W., Voglmaier, M. M., Niznikiewicz, M. A., Seidman, L. J., Hirayasu, Y. I., The, E. K., Rhoads, R., Jakab, M., Kikinis, R., Jolesz, F. A., & Shenton, M. E. (1999). Schizotypal personality disorder and the MRI abnormalities of temporal lobe gray matter. Biological Psychiatry, 45(11), 1393–1402CrossRefGoogle ScholarPubMed
Downhill, J. E., Buchsbaum, M. S., Hazlett, E. A., et al. (1997). Temporal lobe volume in schizotypal personality disorder and schizophrenia. American Psychiatric Association Annual Meeting, May 17–22, Abstract NR 172, Miami, Fla
Duman, R. S., Heninger, G. R., & Nestler, E. J. (1997). A molecular and cellular theory of depression. Arch Gen Psychiatry 54, 597–606CrossRefGoogle Scholar
Figueroa, E., & Silk, K. R. (1997). Biological implications of childhood sexual abuse in borderline personality disorder. Journal of Personality Disorders, 11[1], 71–92CrossRefGoogle ScholarPubMed
Fish, B. (1987). Infant predictors of the longitudinal course of schizophrenic development. Schizophrenia Bulletin, 13, 395–409CrossRefGoogle ScholarPubMed
Ghaemi, S. N., Boiman, E. E., & Goodwin, F. K. (1999). Kindling and second messengers: An approach to the neurobiology of recurrence in bipolar disorder. Biological Psychiatry, 45, 137–144CrossRefGoogle ScholarPubMed
Gould, E. (1999). Serotonin and hippocampal neurogenesis. Neuropsychopharmacology, 21(2 suppl), 46S–51SCrossRefGoogle ScholarPubMed
Greenspan, S. I. (1989). The development of the ego: Implications for personality theory, psychopathology, and the psychotherapeutic process. Madison, Conn.: International Universities Press
Gudzer, J., Paris, J., Zelkowitz, P., & Marchessault, K. (1991). Risk factors for borderline pathology in children. J. American Academy of Child and Adolescent Psychiatry, 35(1), 26–33Google Scholar
Gurvits, I. G., Koenigsberg, H. W., & Siever, L. J. (2000). Neurotransmitter dysfunction in borderline personality disorder. The Psychiatric Clinics of North America, 23, 27–40CrossRefGoogle ScholarPubMed
Herman, J. L., Perry, J. C., & Kolk, B. A. (1989). Childhood trauma in borderline personality disorder. American Journal of Psychiatry, 146, 490–495Google ScholarPubMed
Janowsky, D. S., & Overstreet, D. (1995). The role of acetylcholine mechanisms in mood disorders. In F. E. Bloom & D. D. Kupfer (Eds.), Psychopharmacology: The fourth generation of progress (pp. 945–956). New York: Raven Press
Jason, J., William, S. L., Burton, A., & Rochat, R. (1982). Epidemiological differences between sexual and physical abuse. JAMA, 247, 3344–3348CrossRefGoogle Scholar
Joseph, R. (ed.). (1996). Neuropsychiatry, neuropsychology and clinical neuroscience, 2d Ed. Philadelphia: Williams & Wilkins
Kendler, K. S., Gruenberg, A. M., & Strauss, J. S. (1981). An independent analysis of the Copenhagen sample of the Danish adoption study of schizophrenia, II: the relationship between schizotypal personality disorder and schizophrenia. Archive of General Psychiatry, 38, 982–984CrossRefGoogle Scholar
Kendler, K. S., Ochs, A. L.Gorman, A. M., Hewitt, J. K., Ross, D. E., & Mirsky, A. (1991). The structure of schizotypy: a multitrait twin study. Psychiatry Research, 36, 19–36CrossRefGoogle ScholarPubMed
Kety, S. S., Rosenthal, D., & Wender, P. H. (1975). Mental illness in the biological and adoptive families of adopted individuals who have become schizophrenic: a preliminary report based on psychiatric interviews. In R. Fieve, D. Rosenthal, & H. Brill (Eds.), Genetic research in psychiatry (pp. 47–165). Baltimore: John Hopkins University Press
Kety, S. S., Wender, P. H., Jacobsen, B., Ingraham, L. J., Jansson, L., Faber, B., & Kinney, D. K. (1994). Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen Study in the rest of Denmark. Archives of General Psychiatry, 51(6), 442–455CrossRefGoogle ScholarPubMed
Kirrane, R., Mitropoulou, V., Nunn, M., New, A., Harvey, P., Schopick, F., Silverman, J., & Siever, L. (2000). Effects of amphetamine on visuospatial working memory performance in schizophrenia spectrum personality disorder. Neuropsychopharmacology, 22(1), 14–18CrossRefGoogle ScholarPubMed
Koenigsberg, H. W., Mitropoulou, V., Abi-Dargham, N., Nunn, M., Laruelle, M., & Siever, L. J. (1999). Subcortical dopaminergic activity in schizotypal personality disorder. Annual Metting of the American Psychiatric Association, NR 212Google Scholar
Laruelle, M., Abi-Dargham, A., Dyck, C. H., Gil, R., D'Souza, C. D., Erdos, J., & McCance, E., et al. (1996). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA, 93(17), 9235–9240CrossRefGoogle ScholarPubMed
Ledoux, J. (1996). The emotional brain. New York: Simon & Schuster
Lees-Roitman, S. E., Cornblatt, B. A., Bergman, A., Obuchowski, M., Mitropoulou, V., Keefe, R. S. E., Silverman, J. M., & Siever, L. J. (1997). Attentional functioning in Schizotypal Personality Disorder. American Journal of Psychiatry, 154, 655–660Google Scholar
Lees-Roitman, S. E., Mitropoulou, V., Keefe, R. S. E., Silverman, J. M., Serby, M., Harvey, P. D., Reynolds, D. A., Mohs, R. C., & Siever, L. J. (2000). Visuospatial working memory in schizotypal personality disorder patients. Schizophrenia Research, 41, 447–455CrossRefGoogle Scholar
Lindberg, L., Asberg, M., Sunquist-Stensman, M., et al. (1984). 5-hydroxyindoleacetic acid levels in attempted suicides who have killed their children [letter]. Lancet, 2, 928CrossRefGoogle Scholar
Linnoila, M., Virkkunen, M., Scheinin, M., et al. (1983). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Science, 33, 2609–2614CrossRefGoogle ScholarPubMed
Mann, J. J., Malone, K. M., Nielsen, D. A., Goldman, D., Erdos, J., & Gelernter, J. (1997). Possible association of a polymorphism of the tryptophan hydroxylase gene with suicidal behavior in depressed patients. American Journal of Psychiatry, 154, 1451–1453Google ScholarPubMed
McCarley, R. W., Wible, C. G., Frumin, M., Hirayasu, Y., Levitt, J. J., Fischer, I. A., & Shenton, M. E. (1999). MRI anatomy of schizophrenia. Biological Psychiatry, 45(9), 1099–1119CrossRefGoogle ScholarPubMed
Mendelson, S. D., & McEwen, B. S. (1992). Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5-HT1A and 5HT1B receptors in the dorsal hippocampus and cortex of the rat. Neuroendocrinology, 55, 444–450CrossRefGoogle Scholar
Moeller, F. G., Allen, T., Cherek, D. R., Dougherty, D. M., Lane, S., & Swann, A. C. (1998). Ipsapirone neuroendocrine challenge: relationship to aggression as measured in the human laboratory. Psych. Res., 81, 31–38CrossRefGoogle ScholarPubMed
Murray, R. M., O'Callaghan, E., Castle, D., & Lewis, S. (1992). A neurodevelopmental approach to the classification of schizophrenia. Schizophrenia Bulletin, 18, 319–333CrossRefGoogle ScholarPubMed
New, A. S., Gelernter, J., Mitropoulou, V., Koenigsberg, H. W., Siever, L. J. (1999b). Impulsive aggression associated with HTR1B genotype in personality disorder. Annual Meeting of the American Psychiatric Association, NR388
New, A. S., Gelernter, J., Mitropoulou, V., & Siever, L. J. (1999a). Serotonin related genotype and impulsive aggression. Annual Meeting of the Society of Biological Psychiatry, 45, Abstract #387Google Scholar
New, A. S., Gelernter, J., Yovell, Y., Trestman, R. L., Nielsen, D. A., Silverman, J., Mitropoulou, V., & Siever, L. J. (1998). Tryptophan hydroxylase gene is associated with impulsive aggression: a preliminary study. Am J Med Genet, 81, 13–173.0.CO;2-O>CrossRefGoogle Scholar
Paris, J. (1998). Does childhood trauma cause personality disorders in adults? Can J Psychiatry, 43, 148–153CrossRefGoogle ScholarPubMed
Paris, J., Zweig-Frank, H., & Guzder, J. (1994). Risk factors for borderline personality in male outpatients. Journal of Nervous and Mental Disease, 182[7], 375–380CrossRefGoogle ScholarPubMed
Perry, J. C., & Herman, J. L. (1993). Trauma and defense in the etiology of borderline personality disorder. In J. Paris (Ed.), Borderline Personality Disorder: etiology and treatment. Washington, D.C.: American Psychiatric Press
Plomin, R., & DeFries, J. C. (1981). Multivariate behavioral genetics and development: twin studies. Prog Clin Biol Res, 69 Pt B, 25–33Google ScholarPubMed
Putnam, F. W., Guroff, J. J., Silberman, E. K., Barban, L., & Post, R. M. (1986). The clinical phenomenology of multiple personality disorder: review of 100 recent cases. Journal of Clinical Psychiatry, 47(6), 285–293Google ScholarPubMed
Rinne, T., Westenberg, H. G. M., Boer, J. A., & Brink, W. (2000). Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients. Biol Psychiatry, 47, 548-556CrossRefGoogle ScholarPubMed
Schore, A. N. (1994). Affect regulation and the origin of the self: the neurobiology of emotional development. Hillsdale, N. J.: Erlbaum
Siegel, B. V., Trestman, R. L., O'Flaithbheartaigh, S., Mitropoulou, V., Amin, F., Kirrane, R., Silverman, J., Schmeidler, J., Keefe, R. S. E., & Siever, L. J. (1996). D-amphetamine challenge effects on Wisconsin Card Sort Test performance in schizotypal personality disorder. Schizophrenia Research, 20, 29–32CrossRefGoogle ScholarPubMed
Siever, L. J., Buchsbaum, M. S., New, A. S., Speigel-Cohen, J., Wei, T., Hazlett, E. A., Sevin, M., Nunn, M., & Mitropoulou, V. (1999). d, l-fenfluramine response in impulsive personality disorder assessed with [18F] flourodeoxyglucose positron emission tomography. Neuropsychopharmacology, 20, 413–423CrossRefGoogle Scholar
Siever, L. J., & Davis, K. L. (1991). A psychobiological perspective on the personality disorders. American Journal of Psychiatry, 148, 1647–1658Google ScholarPubMed
Siever, L. J., Kalus, O. F., & Keefe, R. S. (1993). The boundaries of schizophrenia. Psychiatry Clinics of North America, 16, 217–244Google ScholarPubMed
Siever, L. J., Rotter, M., Losonczy, M., et al. (1995). Lateral ventricular enlargement in schizotypal personality disorder. Psychiatry Research, 57, 109–118CrossRefGoogle ScholarPubMed
Siever, L. J., Rotter, M., Tresman, R. L., Coccaro, E. F., Losonczy, M., & Davis, K. (1993). Frontal lobe dysfunction and schizotypal personality disorder. Proc. Amer. Psych. Assoc. Ann. Meeting, NR 502, 186Google Scholar
Siever, L. J., & Tresman, R. L. (1993). The serotonin system and aggressive personality disorder. International Clin. Psychopharmacology, 8(suppl 2), 33–39CrossRefGoogle ScholarPubMed
Siever, L. J., Tresman, R. L., Siegel, B. V., Losonczy, M., Mitropoulou, V., Silverman, J., Keefe, R. S., Mohs, R., Buchsbaum, M. S., & Davis, K. L. (1995). Neuroimaging, neurobiological and neuropsychological abnormalities in SPD: implications for a model of the schizophrenia spectrum. Schizophrenia Research, 15 (1,2), 99CrossRefGoogle Scholar
Silverman, J. M., Pinkham, L., Horvath, T. B., Coccaro, E. F., Klar, H., Schear, S., Apter, S., Davidson, M., Mohs, R., & Siever, L. J. (1991). Affective and impulsive personality disorder traits in the relatives of patients with borderline personality disorder. American Journal of Psychiatry, 148[10], 1378–1385Google ScholarPubMed
Steinberg, B. J., Tresman, R., Mitropoulou, V., et al. (1997). Depressive response to physostigmine challenge in borderline personality disorder patients. Neuropsychopharmacology, 17, 264–273CrossRefGoogle ScholarPubMed
Steinberg, B. J., Tresman, R., & Siever, L. J. (1994). The cholinergic and noradrenergic neurotransmitter systems and affective instability in borderline personality disorder. In K. R. Silk (Ed.), Biological and neurobehavioral studies of Borderline Personality Disorder. Washington, D.C.: American Psychiatric Press
Teicher, M. H., Ito, Y., Glod, C. A., Schiffer, F., & Gelbard, H. A. (1994). Early abuse, limbic system dysfuncton, and borderline personality disorder. In K. R. Silk (Ed.), Biological and neurobehavioral studies of Borderline Personality Disorder. Washington, D.C.: American Psychiatric Press
Torgersen, S. (1984). Genetics and nosologic aspects of schizotypal and borderline personality disorders: a twin study. Archives of General Psychiatry, 41, 546–554CrossRefGoogle Scholar
Torgersen, S. (1994). Genetics in borderline conditions, Acta Psychiatr Scand, suppl 379, 19–25CrossRefGoogle ScholarPubMed
Torgersen, S., & Alnaes, R. (1992). Differential perception of parental bonding in schizotypal and borderline personality disorder patients. Comprehensive Psychiatry, 33[1], 34–48CrossRefGoogle ScholarPubMed
Trestman, R. L., Keefe, R. S. E., Mitropoulou, V., Harvey, P. D., deVegvar, M. L., Lee-Roitman, S., Davidson, M., Aronson, A., Silverman, J., & Siever, L. J. (1995) Cognitive function and biological correlates of cognitive performance in schizotypal personality disorder. Psychiatry Research, 59, 127–136CrossRefGoogle ScholarPubMed
Tsuang, M. T., Bucher, K. D., & Fleming, J. A. (1983). A search for ‘schizophrenia sectrum disorders.’ An application of a muliple thershold model to blind family study data. Br J Psychiatry, 143, 572–577CrossRefGoogle Scholar
Virkkunen, M., Nuutila, A., Goodwin, F. K., & Linnoila, M. (1987). Cerebrospinal fluid monoamine metabolite levels in male arsonists. Arch Gen Psychiatry, 44, 241–247CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669CrossRefGoogle ScholarPubMed
Weinberger, D. R., Berman, K. F., & Zec, R. F. (1986). Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry, 43, 114–124CrossRefGoogle ScholarPubMed
Yehuda, R. (1998). Neuroendocrinology of trauma and post-traumatic stress disorder. In R. Yehuda (Ed.), Psychological trauma. Washington, D.C.: American Psychiatric Press
Zanarini, M. C., & Frankenburg, F. R. (1997). Pathways to the development of borderline personality disorder. Journal of Personality Disorders, 11[1], 93–104CrossRefGoogle ScholarPubMed
Zanarini, M. C., Frankenburg, F. R., & Dubo, E. D. (1998). Axis I comorbidity of borderline personality disorder. American Journal of Psychiatry, 155, 1733–1739CrossRefGoogle ScholarPubMed
Zanarini, M. C., Gunderson, J. G., & Marino, M. F. (1989). Childhood experiences of borderline patients. Comprehensive Psychiatry, 30[1], 18–25CrossRefGoogle ScholarPubMed
Zhang, L. X., Xing, G. Q., Levine, S., Post, R. M., & Smith, R. A. (1997). Maternal deprivation induces neuronal death. Soc Neurosci Abstr, 23, 1113Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×