Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T09:04:15.931Z Has data issue: false hasContentIssue false

32 - Mathematical Expertise

from Part V.II - Domains of Expertise: Arts, Sports, Games, and Other Skills

Published online by Cambridge University Press:  10 May 2018

K. Anders Ericsson
Affiliation:
Florida State University
Robert R. Hoffman
Affiliation:
Florida Institute for Human and Machine Cognition
Aaron Kozbelt
Affiliation:
Brooklyn College, City University of New York
A. Mark Williams
Affiliation:
University of Utah
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alarcon, M., Defries, J., Gillis Light, J., & Pennington, B. (1997). A twin study of mathematics disability. Journal of Learning Disabilities, 30, 617623.Google Scholar
Alexander, J. E., O’Boyle, M. W., & Benbow, C. P. (1996). Developmentally advanced EEG alpha power in gifted male and female adolescents. International Journal of Psychophysiology, 23, 2531.Google Scholar
Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences USA, 113, 49094917.Google Scholar
Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54, 695701.CrossRefGoogle ScholarPubMed
Ashcraft, M. (1995). Cognitive psychology and simple arithmetic: A review and summary of new directions. Mathematical Cognition, 1, 334.Google Scholar
Aydin, K., Ucar, A., Oguz, K. K., Okur, O. O., Agayev, A., Unal, Z., … & Ozturk, C. (2007). Increased gray matter density in the parietal cortex of mathematicians: A voxel-based morphometry study. American Journal of Neuroradiology, 28, 18591864.Google Scholar
Barlow, F. (1952). Mental prodigies. New York: Greenwood Press.Google Scholar
Barner, D., Alvarez, G., Sullivan, J., Brooks, N., Srinivasan, M., & Frank, M. C. (2016). Learning mathematics in a visuospatial format: A randomized, controlled trial of mental abacus instruction. Child Development, 87, 11461158.CrossRefGoogle Scholar
Becker, B. J., & Hedges, L. V. (1988). The effects of selection and variability in studies of gender differences: Commentary on Benbow (1988). Behavioral and Brain Sciences, 11, 183184.Google Scholar
Benbow, C. P. (1988). Sex differences in mathematical reasoning ability in intellectually talented preadolescents: Their nature, effects, and possible causes. Behavioral and Brain Sciences, 11, 169183.Google Scholar
Binet, A. (1894). Psychologie des grands calculateurs et joueurs d’échecs. Paris: Hachette.Google Scholar
Butterworth, B. (1999). The mathematical brain. London: Macmillan.Google Scholar
Butterworth, B. (2001). What makes a prodigy? Nature Neuroscience, 4, 1112.Google Scholar
Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology & Psychiatry, 46, 318.Google Scholar
Butterworth, B., Cipolotti, L., & Warrington, E. K. (1996). Short-term memory impairments and arithmetical ability. Quarterly Journal of Experimental Psychology Section A, 49, 251262.CrossRefGoogle ScholarPubMed
Butterworth, B., Shallice, T., & Watson, F. (1990). Short-term retention without short-term memory. In Vallar, G. & Shallice, T. (eds.), Neuropsychological impairments of short-term memory (pp. 187213). Cambridge University Press.Google Scholar
Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332, 10491053.Google Scholar
Bynner, J., & Parsons, S. (1997). Does numeracy matter? London: The Basic Skills Agency.Google Scholar
Cappelletti, M., Kopelman, M., & Butterworth, B. (2002). Why semantic dementia drives you to the dogs (but not to the horses): A theoretical account. Cognitive Neuropsychology, 19, 483503.Google Scholar
Charness, N., & Campbell, J. I. D. (1988). Acquiring skill at mental calculation in adulthood: A task decomposition. Journal of Experimental Psychology: General, 117, 115129.CrossRefGoogle Scholar
Cipolotti, L., & van Harskamp, N. (2001). Disturbances of number processing and calculation. In Berndt, R. S. (ed.), Handbook of neuropsychology (2nd edn.) (Vol. 3, pp. 305334). Amsterdam: Elsevier Science.Google Scholar
Cockcroft, W. H. (1982). Mathematics counts: Report of the Committee of Inquiry into the Teaching of Mathematics in Schools under the Chairmanship of Dr. W. H. Cockcroft. London: HMSO.Google Scholar
de Groot, A. (1965). Thought and choice in chess. The Hague: Mouton. (Original work published 1946)Google Scholar
Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford University Press.Google Scholar
Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83120.Google Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487506.Google Scholar
Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33, 697710.Google Scholar
Edwards, C. J., Alder, T. B., & Rose, G. J. (2002). Auditory midbrain neurons that count. Nature Neuroscience, 5, 934936.Google Scholar
Ericsson, K. A., & Charness, N. (1994). Expert performance: Its structure and acquisition. American Psychologist, 49, 725747.Google Scholar
Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211245.Google Scholar
Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307314.Google Scholar
Frank, M. C., & Barner, D. (2011). Representing exact number visually using mental abacus. Journal of Experimental Psychology: General, 141, 134149.Google Scholar
Galton, F. (1979). Hereditary genius: An inquiry into its laws and consequences. London: Julian Friedman Publishers. (Original work published 1869)Google Scholar
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
Geary, D. C. (1996). Sexual selection and sex differences in mathematical abilities. Behavioral and Brain Sciences, 19, 229284.Google Scholar
Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
Girelli, L., & Delazer, M. (1996). Subtraction bugs in an acalculic patient. Cortex, 32, 547555.Google Scholar
Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences USA, 109, 1111611120.Google Scholar
Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665668.Google Scholar
Hardy, G. H. (1969). A mathematician’s apology. Cambridge University Press. (Original work published 1940)Google Scholar
Hauser, M., MacNeilage, P., & Ware, M. (1996). Numerical representations in primates. Proceedings of the National Academy of Sciences USA, 93, 15141517.CrossRefGoogle ScholarPubMed
Hécaen, H., Angelergues, R., & Houillier, S. (1961). Les variétés cliniques des acalculies au cours des lésions rétro-rolandiques: Approche statistique du problème. Revue Neurologique, 105, 85103.Google Scholar
Hermelin, B., & O’Connor, N. (1990). Factors and primes: A specific numerical ability. Psychological Medicine, 20, 163169.Google Scholar
Hittmair-Delazer, M., Semenza, C., & Denes, G. (1994). Concepts and facts in calculation. Brain, 117, 715728.Google Scholar
Hoyles, C., Wolf, A., Molyneux-Hodgson, S., & Kent, P. (2002). Mathematical skills in the workplace. London: Institute of Education.Google Scholar
Hunter, I. M. L. (1962). An exceptional talent for calculative thinking. British Journal of Psychology, 53, 243280.Google Scholar
Jensen, A. R. (1990). Speed of information-processing in a calculating prodigy. Intelligence, 14, 259274.Google Scholar
Kellman, P. J., & Massey, C. M. (2013). Perceptual learning, cognition, and expertise. Psychology of Learning and Motivation, 58, 117165.Google Scholar
Keys, W., Harris, S., & Fernandes, C. (1996). Third international mathematics and science study: First national report. Part 1. Slough: National Foundation for Educational Research.Google Scholar
Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9 year old students. Cognition, 93, 99125.Google Scholar
Logie, R. H., Gilhooly, K. J., & Wynn, V. (1994). Counting on working memory in arithmetic problem solving. Memory & Cognition, 22, 395410.Google Scholar
McCloskey, M., & Caramazza, A. (1987). Dissociations of calculation processes. In Deloche, G. & Seron, X. (eds.), Mathematical disabilities: A cognitive neuropsychological perspective (pp. 221234). Hillsdale, NJ: Erlbaum.Google Scholar
McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47, 379387.CrossRefGoogle Scholar
Menninger, K. (1969). Number words and number symbols: A cultural history of numbers (trans. Broneer, P.). Cambridge, MA: MIT Press.Google Scholar
Mitchell, F. D. (1907). Mathematical prodigies. American Journal of Psychology, 18, 61143.CrossRefGoogle Scholar
Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185208.Google Scholar
O’Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 11, 415443.Google Scholar
O’Boyle, M. W., Gill, H. S., Benbow, C. P., & Alexander, J. E. (1994). Concurrent finger-tapping in mathematically gifted males: Evidence for enhanced right-hemisphere involvement during linguistic processing. Cortex, 30, 519526.Google Scholar
Park, J., & Brannon, E. M. (2013). Training the approximate number system improves math proficiency. Psychological Science, 24, 20132019.Google Scholar
Paulesu, E., Frith, C. D., & Frackowiak, R. S. J. (1993). The neural correlates of the verbal component of working memory. Nature, 362, 342345.Google Scholar
Pesenti, M. (2005). Calculation abilities in expert calculators. In Campbell, J. I. D. (ed.), Handbook of mathematical cognition (pp. 413430). Hove: Psychology Press.Google Scholar
Pesenti, M., Seron, X., Samson, D., & Duroux, B. (1999). Basic and exceptional calculation abilities in a calculating prodigy: A case study. Mathematical Cognition, 5, 97148.Google Scholar
Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison and simple addition: A PET study. Journal of Cognitive Neuroscience, 12, 461479.Google Scholar
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., … & Tzourio-Mazoyer, N. (2001). Mental calculation expertise in a prodigy is sustained by right prefrontal and medial-temporal areas. Nature Neuroscience, 4, 103107.Google Scholar
Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24, 10371043.Google Scholar
Rivera-Batiz, F. L. (1992). Quantitative literacy and the likelihood of employment among young adults in the United States. Journal of Human Resources, 27, 313328.Google Scholar
Scripture, E. W. (1891). Arithmetical prodigies. Amercian Journal of Psychology, 4, 159.Google Scholar
Semenza, C., Delazer, M., Bertella, L., Grana, A., Mori, I, Conti, F., … & Mauro, A. (2006). Is math lateralised on the same side as language? Right hemisphere aphasia and mathematical abilities. Neuroscience Letters, 406, 285288.Google Scholar
Shalev, R. S., & Gross-Tsur, V. (2001). Developmental dyscalculia. Pediatric Neurology, 24, 337342.Google Scholar
Singh, H., & O’Boyle, M. W. (2004). Interhemispheric interaction during global–local processing in mathematically gifted adolescents, average-ability youth, and college students. Neuropsychology, 18, 371377.Google Scholar
Smith, S. B. (1983). The great mental calculators: The psychology, methods, and lives of calculating prodigies. New York: Columbia University Press.Google Scholar
Starkey, P., & Cooper, R. G. Jr. (1980). Perception of numbers by human infants. Science, 210, 10331035.Google Scholar
Tanaka, S., Seki, K., Hanakawa, T., Harada, M., Sugawara, S. K., Sadato, N., … & Honda, M. (2012). Abacus in the brain: A longitudinal functional MRI study of a skilled abacus user with a right hemispheric lesion. Frontiers in Psychology, 3, 315. DOI: 10.3389/fpsyg.2012.00315.Google Scholar
Tibber, M. S., Manasseh, G. S. L., Clarke, R. C., Gagin, G., Swanbeck, S. N., Butterworth, B., … & Dakin, S. C. (2013). Sensitivity to numerosity is not a unique visuospatial psychophysical predictor of mathematical ability. Vision Research, 89, 19.Google Scholar
van Harskamp, N. J., & Cipolotti, L. (2001). Selective impairments for addition, subtraction and multiplication: Implications for the organisation of arithmetical facts. Cortex, 37, 363388.Google Scholar
Weinland, J. D., & Schlauch, W. S. (1937). An examination of the computing ability of Mr. Salo Finkelstein. Journal of Experimental Psychology, 21, 382402.CrossRefGoogle Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749751.Google Scholar
Wynn, K. (2000). Findings of addition and subtraction in infants are robust and consistent: Reply to Wakeley, Rivera, and Langer. Child Development, 71, 15351536.CrossRefGoogle ScholarPubMed
Wynn, K. (2002). Do infants have numerical expectations or just perceptual preferences? Commentary. Developmental Science, 5, 207209.Google Scholar
Wynn, K., Bloom, P., & Chiang, W. C. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83, B55B62.Google Scholar
Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13, 314327.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×