Elsevier

Cognition

Volume 18, Issues 1–3, December 1984, Pages 97-159
Cognition

Visual routines

https://doi.org/10.1016/0010-0277(84)90023-4Get rights and content

Abstract

This paper examines the processing of visual information beyond the creation of the early representations. A fundamental requirement at this level is the capacity to establish visually abstract shape properties and spatial relations. This capacity plays a major role in object recognition, visually guided manipulation, and more abstract visual thinking.

For the human visual system, the perception of spatial properties and relations that are complex from a computational standpoint nevertheless often appears deceivingly immediate and effortless. The proficiency of the human system in analyzing spatial information far surpasses the capacities of current artificial systems. The study of the computations that underlie this competence may therefore lead to the development of new more efficient methods for the spatial analysis of visual information.

The perception of abstract shape properties and spatial relations raises fundamental difficulties with major implications for the overall processing of visual information. It will be argued that the computation of spatial relations divides the analysis of visual information into two main stages. The first is the bottom-up creation of certain representations of the visible environment. The second stage involves the application of process called ‘visual routines’ to the representations constructed in the first stage. These routines can establish properties and relations that cannot be represented explicitly in the initial representations.

Visual routines are composed of sequences of elemental operations. Routines for different properties and relations share elemental operations. Using a fixed set of basic operations, the visual system can assemble different routines to extract an unbounded variety of shape properties and spatial relations.

Résumé

Cet article porte sur le traitement de l'information visuelle apre`s la cre´ation des premie`res repre´sentations. La capacite´de de´terminer visuellement les proprie´te´s formelles absraites et les relations spatiales esl un pre´requisa`ce niveau. Cette capacite´joue un role majeur dans la reconnaissance d'objet, dans les manipulations guide´es par la vision ainsi que dans la pense´e visuelle plus abstraite.

Pour le syste`me visuel humain, la perception des proprie´te´s spatiales et des relations complexes au point de vue calcui apparait trompeusement imme´diate et facile. L'efficacite´du syste`me humain pour analyser l'information spatiale surpasse de loin les capacite´s des syste`mes artificiels utilise´s pour l'analyse spatiale de l'information visuelle.

La perception des propriete´s de forme abstraite et des relations spatiales soule`ve des difficulte´es fondamentales avec des conse´quences importantes pour le traitement ge´ne´ral de l'information visuelle. Les auteurs de´fendent l'ide´e que le calcul des relations spatiales se´pare l'analyse de l'infformation visuelle en deux stades principaux. Au cours du premier se cre´ent, de bas en haut, certaines repre´sentations de l'environnement visible. Au cours du second des processus dits ‘routines visuelles’ s'appliquent aux repre´sentations issues du premier stade. Ces routines peuvent reve`ler des proprie´te´s et des relations qui n'e´taient pas repre´sente´es de façon explicite dans les repre´sentations initiales.

Les routines visuelles sont compose´es de se´quences d'ope´rationse´le´mentaires conjointes pour les diffe´rentes proprie´te´s et relations. En utilisant une se´rie fixe d'ope´rations de base, le syste`me visuel peut assembler diffe´rentes routines pour extraire une suite illimite´e de proprie´te´s de forme et de relations spatiales.

A un niveau plus de´taille´, on sugge`re un certain nombre d'ope´rations de base, en se fondant essentiellement sur leur utilite´potentielle et, en partie, sur des preuves empiriques. Ces ope´rations incluent le changement du centre de traitement, l'indexationa`une localisation d'un observateur exte´rieur, des' activations limite´es, le tracage de frontie`res et des marquages. Les auteurs posent le proble`me de l'assemblage de ces ope´rationse´le´mentaires en routines visuelles signifiantes.

Reference (86)

  • AttneaveF. et al.

    The accuracy of extrapolating a pointer into perceived and imagined space

    Am. J. Psychol.

    (1978)
  • BarlowH.H.

    Single units and sensation: A neuron doctrine for perceptual psychology?

    Perception

    (1972)
  • BarlowH.B.

    Critical limiting factors in the design of the eye and the visual cortex. The Ferrier Lecture 1980

    Proc. Roy. Soc. Lond. B

    (1981)
  • BarlettF.C.

    Remembering

    (1932)
  • BeckJ. et al.

    Discriminability of differences in line slope and in line arrangement as a function of mask delay

    Percep. Psychophys.

    (1972)
  • BeckJ. et al.

    The effects of concentrated and distributed attention on peripheral acuity

    Percept. Psychophys.

    (1973)
  • BenevenetoL.A. et al.

    Topographical projections of the prestriate cortex to the pulvinar nuclei in the macaque monkey: an autoradiographic study

    Exp. Brain Res.

    (1977)
  • BiedermanI. et al.

    Searching for objects in real-world scenes

    J. exp. Psychol.

    (1973)
  • DonderiD.C. et al.

    Parallel processing in visual same-different decisions

    Percep. Psychophys.

    (1969)
  • EngelF.L.

    Visual conspecuity, directed attention and retinal locus

    Vis. Res.

    (1971)
  • EriksenC.W. et al.

    Temporal and spatial characteristics of selective encoding from visual displays

    Percep. Psychophys.

    (1972)
  • EriksenC.W. et al.

    Retinal locus and acuity in visual information processing

    Bull. Psychon. Soc.

    (1977)
  • EstesW.K.

    Interactions of signal and background variables in visual processing

    Percep. Psychophys.

    (1972)
  • EvansT.G.

    A heuristic program to solve geometric analogy problems

  • FantzR.L.

    The origin of form perception

    Scient. Am.

    (1961)
  • FischerB. et al.

    Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkey

    Exp. Brain Res.

    (1981)
  • FusterJ.M. et al.

    Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli

    Science

    (1981)
  • GattasR. et al.

    Visual receptive fields of units in the pulvinar of cebus monkey

    Brain Res.

    (1979)
  • GlassL.

    Moire effect from random dots

    Nature

    (1969)
  • GlassL. et al.

    Perception of random dot interference patterns

    Nature

    (1973)
  • GoldbergM.E. et al.

    Activity of superior colliculus in behaving monkey. II. Effect of attention of neural responses

    J. Neurophysiol

    (1972)
  • HoltzmanJ.D. et al.

    Dual task interactions due exclusively to limits in processing resources

    Science

    (1982)
  • HumphreysG.W.

    On varying the span of visual attention: evidence for two modes of spatial attention

    Q.J. exp. Psychol.

    (1981)
  • JohnstonJ.C. et al.

    Visual factors in word perception

    Percep. Psychophys.

    (1973)
  • JonidesJ. et al.

    A conceptual category effect in visual search: O as a letter or as digit

    Percep. Psychophys.

    (1972)
  • JohnsonR.B. et al.

    The perception of size: An experimental synthesis of the associationist and gestalt accounts of the perception of size. Part III

    Q.J. exp. Psychol.

    (1960)
  • JuleszB.

    Experiments in the visual perception of texture

    Scient. Am.

    (1975)
  • JuleszB.

    Textons, the elements of texture perception, and their interactions

    Nature

    (1981)
  • KahnemanD.

    Attention and Effort

    (1973)
  • KolmogoroA.N.

    Logical basis for information theory and probability theory

    IEEE Trans. Info. Theory

    (1968)
  • LappinJ.S. et al.

    Accurate visual measurement of three-dimensional moving patterns

    Science

    (1983)
  • LivingstoneM.L. et al.

    Effects of sleep and arousal on the processing of visual information in the cat

    Nature

    (1981)
  • MackworthN.H.

    Visual noise causes tunnel vision

    Psychon. Sci.

    (1965)
  • Cited by (0)

    This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-80-C-0505 and in part by National Science Foundation Grant 79-23110MCS.

    View full text