Skip to main content

Advertisement

Log in

The Nature of the Relationship Between Anxiety and the Error-Related Negativity Across Development

  • Child and Developmental Psychiatry (KD Fitzgerald, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

I review the literature on the relationship between anxiety and the error-related negativity (ERN), a neurophysiological marker of performance monitoring, across development. I cover the development of the ERN, its functional significance, and its different relationship with anxiety in young children compared to adolescents and adults.

Recent Findings

Contemporary research indicates that the ERN becomes larger with age and shows primary sources in cingulate, frontal, and motor cortices. Functional accounts of the ERN and its relationship with anxiety emphasize either cognitive control or affective mechanisms. Converging evidence across development suggests a reduced ERN characterizes anxious young children whereas an enlarged ERN characterizes older children, adolescents, and adults.

Summary

The mechanisms involved in the developmental change in the relationship between the ERN and anxiety have important implications for better understanding interactions between cognitive control, anxiety, and motivation across the life span. Further research is needed to address extant methodological limitations and make stronger links to related neuroscience findings and theory on the development of anxiety and self-control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. Effects of crossmodal divided attention on late Erp components. 2. Error processing in choice reaction tasks. Electroencephalogr Clin Neurophysiol. 1991;78(6):447–55. https://doi.org/10.1016/0013-4694(91)90062-9.

    Article  CAS  PubMed  Google Scholar 

  2. Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error-detection and compensation. Psychol Sci. 1993;4(6):385–90. https://doi.org/10.1111/j.1467-9280.1993.tb00586.x.

    Article  Google Scholar 

  3. Gehring WJ, Liu Y, Orr JM, Carp J. The error-related negativity (ERN/Ne). In: Luck SJ, Kappenman E, editors. Oxford handbook of event-related potential components. New York: Oxford University Press; 2012. p. 231–91.

    Google Scholar 

  4. Edwards BG, Calhoun VD, Kiehl KA. Joint ICA of ERP and fMRI during error-monitoring. NeuroImage. 2012;59(2):1896–903. https://doi.org/10.1016/j.neuroimage.2011.08.088.

    Article  PubMed  Google Scholar 

  5. Iannaccone R, Hauser TU, Staempfli P, Walitza S, Brandeis D, Brem S. Conflict monitoring and error processing: new insights from simultaneous EEG-fMRI. NeuroImage. 2015;105:395–407. https://doi.org/10.1016/j.neuroimage.2014.10.028.

    Article  PubMed  Google Scholar 

  6. Agam Y, Haemaelaeinen MS, Lee AKC, Dyckman KA, Friedman JS, Isom M, et al. Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proc Natl Acad Sci U S A. 2011;108(42):17556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. • Buzzell GA, Richards JE, White LK, Barker TV, Pine DS, Fox NA. Development of the error-monitoring system from ages 9-35: unique insight provided by MRI-constrained source localization of EEG. NeuroImage. 2017;157:13–26. An empirical study showing primary sources of the ERN in PCC and ACC that are stable across development.

    Article  PubMed  Google Scholar 

  8. Holroyd CB, Coles MGH. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev. 2002;109(4):679–709.

    Article  PubMed  Google Scholar 

  9. Holroyd CB, Yeung N. Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn Sci (Regul Ed). 2012;16(2):122–8.

    Article  Google Scholar 

  10. Yeung N, Botvinick MM, Cohen JD. The neural basis of error detection: conflict monitoring and the error-related negativity. Psychol Rev. 2004;111(4):931–59.

    Article  PubMed  Google Scholar 

  11. Yeung N, Summerfield C. Metacognition in human decision-making: confidence and error monitoring. Philos Trans R Soc B. 2012;367(1594):1310–21. https://doi.org/10.1098/rstb.2011.0416.

    Article  Google Scholar 

  12. • Moser JS, Moran TP, Schroder HS, Donnellan MB, Yeung N. On the relationship between anxiety and error monitoring: a meta-analysis and conceptual framework. Front Hum Neurosci. 2013;7(AUG). A meta-analysis and review article demonstrating that enlarged ERN is most strongly related to anxious apprehension and therefore reflects compensatory effort, and not sensitivity to threat, processes in anxiety.

  13. • Weinberg A, Meyer A, Hale Rude E, Perlman G, Kotov R, Klein DN, et al. Error-related negativity (ERN) and sustained threat: conceptual framework and empirical evaluation in an adolescent sample. Psychophysiology. 2016;53(3):372–85. A review article arguing that the ERN reflects sensitivity to endogenous threat and an empirical demonstration of a relationship bewteen enlarged ERN and compulsive checking behavior in adolescents.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cavanagh JF, Shackman AJ. Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence. J Physiol Paris. 2015;109(1–3):3–15.

    Article  PubMed  Google Scholar 

  15. Coles MGH, Scheffers MK, Holroyd CB. Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biol Psychol. 2001;56(3):173–89.

    Article  CAS  PubMed  Google Scholar 

  16. Yeung N, Cohen JD. The impact of cognitive deficits on conflict monitoring—predictable dissociations between the error-related negativity and N2. Psychol Sci. 2006;17(2):164–71. https://doi.org/10.1111/j.1467-9280.2006.01680.x.

    Article  PubMed  Google Scholar 

  17. Alexander WH, Brown JW. Medial prefrontal cortex as an action-outcome predictor. Nat Neurosci. 2011;14(10):1338–U163. https://doi.org/10.1038/nn.2921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat Rev Neurosci. 2011;12(3):154–67. https://doi.org/10.1038/nrn2994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luu P, Collins P, Tucker DM. Mood, personality, and self-monitoring: negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. J Exp Psychol Gen. 2000;129(1):43–60.

    Article  CAS  PubMed  Google Scholar 

  20. Hajcak G, Moser JS, Yeung N, Simons RF. On the ERN and the significance of errors. Psychophysiology. 2005;42(2):151–60. https://doi.org/10.1111/j.1469-8984.2005.00270.x.

    Article  PubMed  Google Scholar 

  21. Riesel A, Weinberg A, Endrass T, Kathmann N, Hajcak G. Punishment has a lasting impact on error-related brain activity. Psychophysiology. 2012;49(2):239–47.

    Article  PubMed  Google Scholar 

  22. Moser JS, Moran TP, Schroder HS, Donnellan MB, Yeung N. The case for compensatory processes in the relationship between anxiety and error monitoring: a reply to Proudfit, Inzlicht, and Mennin. Front Hum Neurosci. 2014;8:64. https://doi.org/10.3389/Fnhum.2014.00064.

    PubMed  PubMed Central  Google Scholar 

  23. Tamnes CK, Walhovd KB, Torstveit M, Sells VT, Fjell AM. Performance monitoring in children and adolescents: a review of developmental changes in the error-related negativity and brain maturation. Dev Cogn Neurosci Neth. 2013;6:1–13. https://doi.org/10.1016/j.dcn.2013.05.001.

    Article  Google Scholar 

  24. • Cohen AO, Casey BJ. The neurobiology of adolescent self-control. In: Egner T, editor. The Wiley handbook of cognitive control. West Sussex: Wiley Blackwell; 2017. p. 457–75. A chapter reviewing the latest research on adolescent changes in connectivity between the PFC and amygdala suggesting the development of a regulatory loop to meet the developmental task of separation from caregivers.

    Google Scholar 

  25. Luna B, Padmanabhan A, O'Hearn K. What has fMRI told us about the development of cognitive control through adolescence? Brain Cogn. 2010;72(1):101–13. https://doi.org/10.1016/j.bandc.2009.08.005.

    Article  PubMed  Google Scholar 

  26. Rubia K. Functional brain imaging across development. Eur Child Adolesc Psychiatry. 2013;22(12):719–31. https://doi.org/10.1007/s00787-012-0291-8.

    Article  PubMed  Google Scholar 

  27. Davies PL, Segalowitz SJ, Gavin WJ. Development of response-monitoring ERPs in 7-to 25-year-olds. Dev Neuropsychol. 2004;25(3):355–76. https://doi.org/10.1207/s15326942dn2503_6.

    Article  PubMed  Google Scholar 

  28. Brooker RJ, Buss KA, Dennis TA. Error-monitoring brain activity is associated with affective behaviors in young children. Dev Cogn Neurosci Neth. 2011;1(2):141–52. https://doi.org/10.1016/j.dcn.2010.12.002.

    Article  Google Scholar 

  29. Kim EY, Iwaki N, Imashioya H, Uno H, Fujita T. Error-related negativity in a visual go/no-go task: children vs. adults. Dev Neuropsychol. 2007;31(2):181–91.

    Article  PubMed  Google Scholar 

  30. Torpey DC, Hajcak G, Klein DN. An examination of error-related brain activity and its modulation by error value in young children. Dev Neuropsychol. 2009;34(6):749–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Torpey DC, Hajcak G, Kim J, Kujawa A, Klein DN. Electrocortical and behavioral measures of response monitoring in young children during a Go/No-Go task. Dev Psychobiol. 2012;54(2):139–50. https://doi.org/10.1002/dev.20590.

    Article  PubMed  Google Scholar 

  32. Wiersema JR, van der Meere JJ, Roeyers H. Developmental changes in error monitoring: an event-related potential study. Neuropsychologia. 2007;45(8):1649–57. https://doi.org/10.1016/j.neuropsychologia.2007.01.004.

    Article  PubMed  Google Scholar 

  33. Grammer JK, Carrasco M, Gehring WJ, Morrison FJ. Age-related changes in error processing in young children: a school-based investigation. Dev Cogn Neurosci. 2014;9:93–105. https://doi.org/10.1016/j.dcn.2014.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lo SL, Schroder HS, Moran TP, Durbin CE, Moser JS. Neurophysiological evidence of an association between cognitive control and defensive reactivity processes in young children. Dev Cogn Neurosci. 2015;15:35–47. https://doi.org/10.1016/j.den.2015.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  35. • Lo SL, Schroder HS, Fisher ME, Durbin CE, Fitzgerald KD, Danovitch JH, et al. Associations between disorder-specific symptoms of anxiety and error-monitoring brain activity in young children. J Abnorm Child Psychol. 2016;22:1–10. An empirical example of the relationship between reduced ERN and anxiety in young children.

    CAS  Google Scholar 

  36. • Du Puis D, Ram N, Willner CJ, Karalunas S, Segalowitz SJ, Gatzke-Kopp LM. Implications of ongoing neural development for the measurement of the error-related negativity in childhood. Dev Sci. 2015;18(3):452–68. An empirical example of the effects of different approaches to the measurement of the ERN in young children.

    Article  Google Scholar 

  37. Agam Y, Vangel M, Roffman JL, Gallagher PJ, Chaponis J, Haddad S, et al. Dissociable genetic contributions to error processing: a multimodal neuroimaging study. PLoS One. 2014;9(7):e101784.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Satterthwaite TD, Wolf DH, Erus G, Ruparel K, Elliott MA, Gennatas ED, et al. Functional maturation of the executive system during adolescence. J Neurosci. 2013;33(41):16249–61. https://doi.org/10.1523/Jneurosci.2345-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014;137(1):12–32. A review article outlining a novel theory of PCC function suggesting unique contributions of the dorsal PCC to attentional focus and of the ventral PCC to internally directed cognition.

    Article  PubMed  Google Scholar 

  40. Vaidyanathan U, Nelson LD, Patrick CJ. Clarifying domains of internalizing psychopathology using neurophysiology. Psychol Med. 2012;42(3):447–59. https://doi.org/10.1017/S0033291711001528.

    Article  CAS  PubMed  Google Scholar 

  41. Weinberg A, Riesel A, Hajcak G. Integrating multiple perspectives on error-related brain activity: the ERN as a neural indicator of trait defensive reactivity. Motiv Emot. 2012;36(1):84–100. https://doi.org/10.1007/s11031-011-9269-y.

    Article  Google Scholar 

  42. • Moser JS, Moran TP, Kneip C, Schroder HS, Larson MJ. Sex moderates the association between symptoms of anxiety, but not obsessive compulsive disorder, and error-monitoring brain activity: a meta-analytic review. Psychophysiology. 2016;53(1):21–9. https://doi.org/10.1111/psyp.12509. An empirical demonstration of a sex/gender difference in the relationship between the ERN and anxiety, but not OCD, and an especially large ERN in OCD patients.

    Article  PubMed  Google Scholar 

  43. Weinberg A, Kotov R, Proudfit GH. Neural indicators of error processing in generalized anxiety disorder, obsessive-compulsive disorder, and major depressive disorder. J Abnorm Psychol. 2015;124(1):172–85.

    Article  PubMed  Google Scholar 

  44. Meyer A, Weinberg A, Klein DN, Hajcak G. The development of the error-related negativity (ERN) and its relationship with anxiety: evidence from 8 to 13 year-olds. Dev Cogn Neurosci. 2012;2(1):152–61. https://doi.org/10.1016/j.dcn.2011.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Torpey DC, Hajcak G, Kim J, Kujawa AJ, Dyson MW, Olino TM, et al. Error-related brain activity in young children: associations with parental anxiety and child temperamental negative emotionality. J Child Psychol Psychiatry. 2013;54(8):854–62. https://doi.org/10.1111/jcpp.12041.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Moser JS, Durbin CE, Patrick CJ, Schmidt NB. Combining neural and behavioral indicators in the assessment of internalizing psychopathology in children and adolescents. J Clin Child Adolesc Psychol. 2015;44(2):329–40.

    Article  PubMed  Google Scholar 

  47. Heller W, Nitschke JB, Etienne MA, Miller GA. Patterns of regional brain activity differentiate types of anxiety. J Abnorm Psychol. 1997;106(3):376–85. https://doi.org/10.1037//0021-843x.106.3.376.

    Article  CAS  PubMed  Google Scholar 

  48. Shankman SA, Klein DN, Torpey DC, Olino TM, Dyson MW, Kim J, et al. Do positive and negative temperament traits interact in predicting risk for depression? A resting EEG study of 329 preschoolers. Dev Psychopathol. 2011;23(2):551–62. https://doi.org/10.1017/S0954579411000022.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Grillon C, Dierker L, Merikangas KR. Startle modulation in children at risk for anxiety disorders and/or alcoholism. J Am Acad Child Adolesc Psychiatry. 1997;36(7):925–32. https://doi.org/10.1097/00004583-199707000-00014.

    Article  CAS  PubMed  Google Scholar 

  50. Grillon C, Dierker L, Merikangas KR. Fear-potentiated startle in adolescent offspring of parents with anxiety disorders. Biol Psychiatry. 1998;44(10):990–7. https://doi.org/10.1016/S0006-3223(98)00188-7.

    Article  CAS  PubMed  Google Scholar 

  51. Carrasco M, Harbin SM, Nienhuis JK, Fitzgerald KD, Gehring WJ, Hanna GL. Increased error-related brain activity in youth with obsessive-compulsive disorder and unaffected siblings. Depress Anxiety. 2013;30(1):39–46. https://doi.org/10.1002/da.22035.

    Article  PubMed  Google Scholar 

  52. Hanna GL, Carrasco M, Harbin SM, Nienhuis JK, LaRosa CE, Chen PY, et al. Error-related negativity and tic history in pediatric obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2012;51(9):902–10. https://doi.org/10.1016/j.jaac.2012.06.019.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ladouceur CD, Dahl RE, Birmaher B, Axelson DA, Ryan ND. Increased error-related negativity (ERN) in childhood anxiety disorders: ERP and source localization. J Child Psychol Psychiatry. 2006;47(10):1073–82.

    Article  PubMed  Google Scholar 

  54. Hajcak G, Franklin ME, Foa EB, Simons RF. Increased error-related brain activity in pediatric obsessive-compulsive disorder before and after treatment. Am J Psychiatr. 2008;165(1):116–23.

    Article  PubMed  Google Scholar 

  55. Jackson F, Nelson BD, Meyer A, Hajcak G. Pubertal development and anxiety risk independently relate to startle habituation during fear conditioning in 8–14 year-old females. Dev Psychobiol. 2017;59(4):436–48.

    Article  PubMed  Google Scholar 

  56. Meyer A, Hajcak G, Glenn CR, Kujawa AJ, Klein DN. Error-related brain activity is related to aversive potentiation of the startle response in children, but only the ERN is associated with anxiety disorders. Emotion. 2017;17(3):487–96.

    Article  PubMed  Google Scholar 

  57. McDermott JM, Perez-Edgar K, Henderson HA, Chronis-Tuscano A, Pine DS, Fox NA. A history of childhood behavioral inhibition and enhanced response monitoring in adolescence are linked to clinical anxiety. Biol Psychiatry. 2009;65(5):445–8.

    Article  PubMed  Google Scholar 

  58. Meyer A, Hajcak G, Torpey DC, Kujawa A, Kim J, Bufferd S, et al. Increased error-related brain activity in six-year-old children with clinical anxiety. J Abnorm Child Psychol. 2013;41(8):1257–66.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shiels K, Hawk LW. Self-regulation in ADHD: the role of error processing. Clin Psychol Rev. 2010;30(8):951–61. https://doi.org/10.1016/j.cpr.2010.06.010.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Meyer A, Hajcak G, Torpey-Newman DC, Kujawa A, Klein DN. Enhanced error-related brain activity in children predicts the onset of anxiety disorders between the ages of 6 and 9. J Abnorm Psychol. 2015;124(2):266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kessel EM, Meyer A, Hajcak G, Dougherty LR, Torpey-Newman DC, Carlson GA, et al. Transdiagnostic factors and pathways to multifinality: the error-related negativity predicts whether preschool irritability is associated with internalizing versus externalizing symptoms at age 9. Dev Psychopathol. 2016;28(4):913–26. https://doi.org/10.1017/S0954579416000626.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lahat A, Lamm C, Chronis-Tuscano A, Pine DS, Henderson HA, Fox NA. Early behavioral inhibition and increased error monitoring predict later social phobia symptoms in childhood. J Am Acad Child Psychiatry. 2014;53(4):447–55. https://doi.org/10.1016/j.jaac.2013.12.019.

    Article  Google Scholar 

  63. • Meyer A, Danielson CK, Danzig AP, Bhatia V, Black SR, Bromet E, et al. Neural biomarker and early temperament predict increased internalizing symptoms after a natural disaster. J Am Acad Child Adolesc Psychiatry. 2017;56(5):410–6. https://doi.org/10.1016/j.jaac.2017.02.005. An empirical example of the complex contribution of the ERN, early temperament, and traumatic stress responses to the development of internalizing problems.

    Article  PubMed  Google Scholar 

  64. Meyer A, Hajcak G, Hayden E, Sheikh HI, Singh SM, Klein DN. A genetic variant brain-derived neurotropic factor (BDNF) polymorphism interacts with hostile parenting to predict error-related brain activity and thereby risk for internalizing disorders in children. Dev Psychopathol. 2017:1–17.

  65. McDermott JM, Troller-Renfree S, Vanderwert R, Nelson CA, Zeanah CH, Fox NA. Psychosocial deprivation, executive functions, and the emergence of socio-emotional behavior problems. Front Hum Neurosci. 2013;7:Artn 167. https://doi.org/10.3389/Fnhum.2013.00167.

    Article  Google Scholar 

  66. Troller-Renfree S, Nelson CA, Zeanah CH, Fox NA. Deficits in error monitoring are associated with externalizing but not internalizing behaviors among children with a history of institutionalization. J Child Psychol Psychiatry. 2016;57(10):1145–53.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Braver TS. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn Sci. 2012;16(2):106–13. https://doi.org/10.1016/j.tics.2011.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meyer A. A biomarker of anxiety in children and adolescents: a review focusing on the error-related negativity (ERN) and anxiety across development. Dev Cogn Neurosci. 2017;27:58–68.

    Article  PubMed  Google Scholar 

  69. Gullone E. The development of normal fear: a century of research. Clin Psychol Rev. 2000;20(4):429–51. https://doi.org/10.1016/S0272-7358(99)00034-3.

    Article  CAS  PubMed  Google Scholar 

  70. Drizinsky J, Zulch J, Gibbons H, Stahl J. How personal standards perfectionism and evaluative concerns perfectionism affect the error positivity and post-error behavior with varying stimulus visibility. Cogn Affect Behav Neurosci. 2016;16(5):876–87. https://doi.org/10.3758/s13415-016-0438-z.

    Article  PubMed  Google Scholar 

  71. Stahl J, Acharki M, Kresimon M, Voller F, Gibbons H. Perfect error processing: perfectionism-related variations in action monitoring and error processing mechanisms. Int J Psychophysiol. 2015;97(2):153–62. https://doi.org/10.1016/j.ijpsycho.2015.06.002.

    Article  PubMed  Google Scholar 

  72. Tops M, Koole SL, Wijers AA. The Pe of perfectionism concern over mistakes predicts the amplitude of a late frontal error positivity. J Psychophysiol. 2013;27(2):84–94. https://doi.org/10.1027/0269-8803/a000090.

    Article  Google Scholar 

  73. Endrass T, Schuermann B, Kaufmann C, Spielberg R, Kniesche R, Kathmann N. Performance monitoring and error significance in patients with obsessive-compulsive disorder. Biol Psychol. 2010;84(2):257–63. https://doi.org/10.1016/j.biopsycho.2010.02.002.

    Article  PubMed  Google Scholar 

  74. Rabner J, Mian ND, Langer DA, Comer JS, Pincus D. The relationship between worry and dimensions of anxiety symptoms in children and adolescents. Behav Cogn Psychother. 2017;45(2):124–38. https://doi.org/10.1017/S1352465816000448.

    Article  PubMed  Google Scholar 

  75. Beesdo K, Knappe S, Pine DS. Anxiety and anxiety disorders in children and adolescents: developmental issues and implications for DSM-V. Psychiatr Clin N Am. 2009;32:483.

    Article  Google Scholar 

  76. Brown TA, Barlow DH. A proposal for a dimensional classification system based on the shared features of the DSM-IV anxiety and mood disorders: implications for assessment and treatment. Psychol Assess. 2009;21:256–71.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Moser JS, Hajcak G, Simons RF. The effects of fear on performance monitoring and attentional allocation. Psychophysiology. 2005;42:261–8.

    Article  PubMed  Google Scholar 

  78. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7(2):336–53. https://doi.org/10.1037/1528-3542.7.2.336.

    Article  PubMed  Google Scholar 

  79. Zambrano-Vazquez L, Allen JJB. Differential contributions of worry, anxiety, and obsessive compulsive symptoms to ERN amplitudes in response monitoring and reinforcement learning tasks. Neuropsychologia. 2014;61:197–209. https://doi.org/10.1016/j.neuropsychologia.2014.06.023.

    Article  PubMed  Google Scholar 

  80. • Moran TP, Bernat EM, Aviyente S, Schroder HS, Moser JS. Sending mixed signals: worry is associated with enhanced initial error processing but reduced call for subsequent cognitive control. Soc Cogn Affect Neurosci. 2015;10(11):1548–56. https://doi.org/10.1093/scan/nsv046. An empirical study demonstrating that the ERN compensates for reduced functional connectivity between medial and lateral prefrontal cortices indexed by EEG-derived interchannel phase coherence in worriers.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schroder HS, Glazer JE, Bennett KP, Moran TP, Moser JS. Suppression of error-preceding brain activity explains exaggerated error monitoring in females with worry. Biol Psychol. 2017;122:33–41. https://doi.org/10.1016/j.biopsycho.2016.03.013.

    Article  PubMed  Google Scholar 

  82. • Shenhav A, Botvinick MM, Cohen JD. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron. 2013;79(2):217–40. https://doi.org/10.1016/j.neuron.2013.07.007. Review article detailing a novel theory of anterior cingulate cortex function suggesting that it calculates and signals the expected value of a particular type and strength of cognitive control.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shenhav A, Musslick S, Lieder F, Kool W, Griffiths TL, Cohen JD, et al. Toward a rational and mechanistic account of mental effort. Annu Rev Neurosci. 2017;40:99–124. https://doi.org/10.1146/annurev-neuro-072116-031526.

    Article  CAS  PubMed  Google Scholar 

  84. Eisenberg N, Valiente C, Spinrad TL, Cumberland A, Liew J, Reiser M, et al. Longitudinal relations of children’s effortful control, impulsivity, and negative emotionality to their externalizing, internalizing, and co-occurring behavior problems. Dev Psychol. 2009;45(4):988–1008. https://doi.org/10.1037/a0016213.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Riesel A, Weinberg A, Endrass T, Meyer A, Hajcak G. The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks. Biol Psychol. 2013;93(3):377–85. https://doi.org/10.1016/j.biopsycho.2013.04.007.

    Article  PubMed  Google Scholar 

  86. Meyer A, Bress JN, Proudfit GH. Psychometric properties of the error-related negativity in children and adolescents. Psychophysiology. 2014;51(7):602–10.

    Article  PubMed  Google Scholar 

  87. Rapee RM, Schniering CA, Hudson JL. Anxiety disorders during childhood and adolescence: origins and treatment. Annu Rev Clin Psychol. 2009;5:311–41. https://doi.org/10.1146/annurev.clinpsy.032408.153628.

    Article  PubMed  Google Scholar 

  88. Roza SJ, Hofstra MB, van der Ende J, Verhulst FC. Stable prediction of mood and anxiety disorders based on behavioral and emotional problems in childhood: a 14-year follow-up during childhood, adolescence, and young adulthood. Am J Psychiatry. 2003;160(12):2116–21. https://doi.org/10.1176/appi.ajp.160.12.2116.

    Article  PubMed  Google Scholar 

  89. Copeland WE, Angold A, Shanahan L, Costello EJ. Longitudinal patterns of anxiety from childhood to adulthood: the Great Smoky Mountains Study. J Am Acad Child Adolesc Psychiatry. 2014;53(1):21–33. https://doi.org/10.1016/j.jaac.2013.09.017.

    Article  PubMed  Google Scholar 

  90. Banich MT. Executive function: the search for an integrated account. Curr Dir Psychol Sci. 2009;18(2):89–94.

    Article  Google Scholar 

  91. • Shanmugan S, Wolf DH, Calkins ME, Moore TM, Ruparel K, Hopson RD, et al. Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth. Am J Psychiatry. 2016;173(5):517–26. https://doi.org/10.1176/appi.ajp.2015.15060725. An empirical demonstration of a relationship between compensatory ACC activation and anxiety in a large sample of children and adolescents.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Silton RL, Heller W, Engels AS, Towers DN, Spielberg JM, Edgar JC, et al. Depression and anxious apprehension distinguish frontocingulate cortical activity during top-down attentional control. J Abnorm Psychol. 2011;120(2):272–85. https://doi.org/10.1037/a0023204.

    Article  PubMed  PubMed Central  Google Scholar 

  93. • Baum GL, Ciric R, Roalf DR, Betzel RF, Moore TM, Shinohara RT, et al. Modular segregation of structural brain networks supports the development of executive function in youth. Curr Biol. 2017;0(0). An empirical demonstration of the contributions of increased modularization of the brain into functional networks to the development of executive functions across children and adolescents.

  94. Spunt RP, Lieberman MD, Cohen JR, Eisenberger NI. The phenomenology of error processing: the dorsal ACC response to stop-signal errors tracks reports of negative affect. J Cogn Neurosci. 2012;24(8):1753–65.

    Article  PubMed  Google Scholar 

  95. Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron. 2013;80(6):1359–67. https://doi.org/10.1016/j.neuron.2013.10.057.

    Article  CAS  PubMed  Google Scholar 

  96. Fitzgerald KD, Stern ER, Angstadt M, Nicholson-Muth KC, Maynor MR, Welsh RC, et al. Altered function and connectivity of the medial frontal cortex in pediatric obsessive-compulsive disorder. Biol Psychiatry. 2010;68(11):1039-47. https://doi.org/10.1016/j.biopsych.2010.08.018.

  97. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483-506. https://doi.org/10.1016/j.tics.2011.08.003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Moser.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Child and Developmental Psychiatry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moser, J.S. The Nature of the Relationship Between Anxiety and the Error-Related Negativity Across Development. Curr Behav Neurosci Rep 4, 309–321 (2017). https://doi.org/10.1007/s40473-017-0132-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0132-7

Keywords

Navigation