Skip to main content

Advertisement

Log in

An Evaluation of the Evidence Relating to Physical Inactivity, Sedentary Behavior, and Cancer Incidence and Mortality

  • Cancer Epidemiology (G Colditz, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review provides an up-to-date overview of the evidence relating to physical inactivity, sedentary behavior, and cancer, both in terms of risk and mortality. A summary of the postulated biological mechanisms underpinning these associations is also presented.

Recent Findings

Epidemiologic evidence suggests that physical activity is inversely associated with cancers of the esophagus (adenocarcinoma), liver, lung, kidney, gastric cardia, endometrium, colon, rectum, head and neck, bladder, and breast, as well as myeloid leukemia and myeloma. Physical activity prior to a cancer diagnosis is related to decreased risk of all-cancer mortality, and pre- and postdiagnosis physical activities are both related to lower risk of breast cancer-specific and colorectal cancer-specific mortality. Prolonged sedentary behavior is associated with an increased risk of colorectal, endometrial, lung, and breast cancer. Pre-diagnosis sedentary behavior is associated with increased risk of all-cancer mortality and colorectal cancer-specific mortality. Postulated biological mechanisms underpinning the associations of physical inactivity and sedentary behavior with cancer include body composition (most evidence relates to adiposity), sex hormones, metabolic hormones, and chronic inflammation.

Summary

Relatively small behavioral changes at a population level would likely decrease cancer-related burden of disease and associated health expenditure. At the individual level, the optimal frequency, duration, and intensity of physical activity or sedentary behavior required for significant risk reduction or increase remain unclear. Future research should integrate objective activity monitoring with multiple assessment time points into large cohort studies for improved assessment of physical activity and sedentary behavior. Such data will help inform more robust and detailed recommendations for cancer control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its independent risk on disease incidence, mortality and hospitalization in adults: a meta-analysis. Ann Intern Med. 2015;162(2):123–32.

    Article  PubMed  Google Scholar 

  2. Ekelund U, Steene-Johannessen J, Brown WJ, Fagerland MW, Owen N, Powell KE, et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet. 2016;388(10051):1302–10.

    Article  PubMed  Google Scholar 

  3. • Lynch BM, Owen N. Too much sitting and chronic disease risk: steps to move the science forward. Ann Intern Med. 2015;162(2):146–7. This editorial articulates strategies for increasing scientific understanding about sedentary behavior and chronic disease, including recommendations for future research directions

    Article  PubMed  Google Scholar 

  4. Das P, Horton R. Physical activity-time to take it seriously and regularly. Lancet. 2016;388(10051):1254–5.

    Article  PubMed  Google Scholar 

  5. Sallis JF, Bull F, Guthold R, Heath GW, Inoue S, Kelly P, et al. Progress in physical activity over the Olympic quadrennium. Lancet. 2016;388(10051):1325–36.

    Article  PubMed  Google Scholar 

  6. Ding D, Lawson KD, Kolbe-Alexander TL, Finkelstein EA, Katzmarzyk PT, van Mechelen W, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):1311–24.

    Article  PubMed  Google Scholar 

  7. Owen N, Sparling PB, Healy GN, Matthews CE. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–41.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rezende LF, Sa TH, Mielke GI, Viscondi JY, Rey-Lopez JP, Garcia LM. All-cause mortality attributable to sitting time: analysis of 54 countries worldwide. Am J Prev Med. 2016;51(2):253–63.

    Article  PubMed  Google Scholar 

  9. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  10. World Health O. Global status report on noncommunicable diseases 2014. Geneva; 2014.

  11. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC cancer base no. 11. Lyon, France: International Agency for Research on Cancer; 2013.

    Google Scholar 

  12. Friedenreich CM, Neilson HK, Lynch BM. State of the epidemiologic evidence on physical activity and cancer prevention. Eur J Cancer. 2010;46:2593–604.

    Article  PubMed  Google Scholar 

  13. • Schmid D, Leitzmann MF. Television viewing and time spent sedentary in relation to cancer risk: a meta-analysis. J Natl Cancer Inst. 2014;106(7):dju098. First published meta-analysis summarizing associations of sedentary behavior with risk of site-specific cancer. Found that sedentary behavior increases the risk of colorectal, lung, and endometrial cancers

    Article  PubMed  Google Scholar 

  14. • Shen D, Mao W, Liu T, Lin Q, Lu X, Wang Q, et al. Sedentary behavior and incident cancer: a meta-analysis of prospective studies. PLoS One. 2014;9(8):e105709. Meta-analysis of prospective cohort studies, examining associations of sedentary behavior and site-specific cancer risk. Sedentary behavior found to significantly increase the risk of cancers of the colorectum, lung, endometrium, and breast

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Physical Activity Guidelines Advisory C. Physical activity guidelines advisory committee report, 2008. Washington, DC: U.S. Department of Health and Human Services; 2008.

    Google Scholar 

  16. International Agency for Research on Cancer. Weight control and physical activity. IARC Handbook of Cancer Prevention. vol 6. Lyon: IARC; 2002.

  17. World Cancer Research Fund. American Institute for Cancer Research. Food, nutrition, and physical activity, and the prevention of cancer: a global perspective. Washington DC: AICR; 2007.

    Google Scholar 

  18. Liu Y, Hu F, Li D, Wang F, Zhu L, Chen W, et al. Does physical activity reduce the risk of prostate cancer? A systematic review and meta-analysis. Eur Urol. 2011;60(5):1029–44.

    Article  PubMed  Google Scholar 

  19. Brenner DR, Yannitsos DH, Farris MS, Johansson M, Friedenreich CM. Leisure-time physical activity and lung cancer risk: a systematic review and meta-analysis. Lung Cancer. 2016;95:17–27.

    Article  PubMed  Google Scholar 

  20. Schmid D, Ricci C, Behrens G, Leitzmann MF. Does smoking influence the physical activity and lung cancer relation? A systematic review and meta-analysis. Eur J Epidemiol. 2016;31(12):1173–90.

    Article  CAS  PubMed  Google Scholar 

  21. Zhong S, Chen L, Lv M, Ma T, Zhang X, Zhao J. Nonoccupational physical activity and risk of ovarian cancer: a meta-analysis. Tumour Biol. 2014;35(11):11065–73.

    Article  PubMed  Google Scholar 

  22. Keimling M, Behrens G, Schmid D, Jochem C, Leitzmann MF. The association between physical activity and bladder cancer: systematic review and meta-analysis. Br J Cancer. 2014;110(7):1862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Behrens G, Jochem C, Keimling M, Ricci C, Schmid D, Leitzmann MF. The association between physical activity and gastroesophageal cancer: systematic review and meta-analysis. Eur J Epidemiol. 2014;29(3):151–70.

    Article  PubMed  Google Scholar 

  24. Singh S, Edakkanambeth Varayil J, Devanna S, Murad MH, Iyer PG. Physical activity is associated with reduced risk of gastric cancer: a systematic review and meta-analysis. Cancer Prev Res. 2014;7(1):12–22.

    Article  Google Scholar 

  25. Behrens G, Jochem C, Schmid D, Keimling M, Ricci C, Leitzmann MF. Physical activity and risk of pancreatic cancer: a systematic review and meta-analysis. Eur J Epidemiol. 2015;30(4):279–98.

    Article  PubMed  Google Scholar 

  26. Farris MS, Mosli MH, McFadden AA, Friedenreich CM, Brenner DR. The association between leisure time physical activity and pancreatic cancer risk in adults: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2015;24(10):1462–73.

    Article  Google Scholar 

  27. Singh S, Devanna S, Edakkanambeth Varayil J, Murad MH, Iyer PG. Physical activity is associated with reduced risk of esophageal cancer, particularly esophageal adenocarcinoma: a systematic review and meta-analysis. BMC Gastroenterol. 2014;14:101.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Behrens G, Leitzmann MF. The association between physical activity and renal cancer: systematic review and meta-analysis. Br J Cancer. 2013;108(4):798–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Neilson HK, Farris MS, Stone CR, Vaska MM, Brenner DR, Friedenreich CM. Moderate-vigorous recreational physical activity and breast cancer risk, stratified by menopause status: a systematic review and meta-analysis. Menopause. 2017;24(3):322–44.

    Article  PubMed  Google Scholar 

  30. Zhou Y, Zhao H, Peng C. Association of sedentary behavior with the risk of breast cancer in women: update meta-analysis of observational studies. Ann Epidemiol. 2015;25(9):687–97.

    Article  PubMed  Google Scholar 

  31. Robsahm TE, Aagnes B, Hjartaker A, Langseth H, Bray FI, Larsen IK. Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. Eur J Cancer Prev. 2013;22(6):492–505.

    Article  PubMed  Google Scholar 

  32. Schmid D, Behrens G, Keimling M, Jochem C, Ricci C, Leitzmann M. A systematic review and meta-analysis of physical activity and endometrial cancer risk. Eur J Epidemiol. 2015;30(5):397–412.

    Article  CAS  PubMed  Google Scholar 

  33. •• Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–25. Pooled analysis of harmonized data from cohorts within the NCI Cancer Consortium. This study found that leisure-time physical activity is inversely associated with risk of 13 different cancers

    Article  PubMed  Google Scholar 

  34. • Li Y, Gu M, Jing F, Cai S, Bao C, Wang J, et al. Association between physical activity and all cancer mortality: dose-response meta-analysis of cohort studies. Int J Cancer J Int Cancer. 2016;138(4):818–32. Categorical meta-analysis of 32 prospective cohort studies found highest category of pre-diagnosis physical activity associated with a 20% decreased risk of all cancer mortality. A clear dose-response was noted; 10 MET-h/week was related to a 7% lower risk for all cancer mortality

    Article  CAS  Google Scholar 

  35. • Schmid D, Leitzmann MF. Association between physical activity and mortality among breast cancer and colorectal cancer survivors: a systematic review and meta-analysis. Ann Oncol. 2014;25(7):1293–311. Meta-analysis of 16 studies of breast cancer mortality and seven studies of colorectal cancer mortality found significant, inverse associations with both pre- and postdiagnosis physical activities

    Article  CAS  PubMed  Google Scholar 

  36. Wu W, Guo F, Ye J, Li Y, Shi D, Fang D, et al. Pre- and post-diagnosis physical activity is associated with survival benefits of colorectal cancer patients: a systematic review and meta-analysis. Oncotarget. 2016;7(32):52095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015;54(5):635–54.

    Article  PubMed  Google Scholar 

  38. Je Y, Jeon JY, Giovannucci EL, Meyerhardt JA. Association between physical activity and mortality in colorectal cancer: a meta-analysis of prospective cohort studies. Int J Cancer J Int Cancer. 2013;133(8):1905–13.

    Article  CAS  Google Scholar 

  39. Dunstan DW, Barr ELM, Healy GN, Salmon J, Shaw JE, Balkau B, et al. Television viewing time and mortality: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Circulation. 2010;121:384–91.

    Article  CAS  PubMed  Google Scholar 

  40. Katzmarzyk PT, Church TS, Craig CL, Bouchard C. Sitting time and mortality from all causes, cardiovascular disease, and cancer. Med Sci Sports Exerc. 2009;41(5):998–1005.

    Article  PubMed  Google Scholar 

  41. Keadle SK, Moore SC, Sampson JN, Xiao Q, Albanes D, Matthews CE. Causes of death associated with prolonged TV viewing: NIH-AARP Diet and Health Study. Am J Prev Med. 2015;49(6):811–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim Y, Wilkens LR, Park SY, Goodman MT, Monroe KR, Kolonel LN. Association between various sedentary behaviours and all-cause, cardiovascular disease and cancer mortality: the Multiethnic Cohort Study. Int J Epidemiol. 2013;42(4):1040–56.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Matthews CE, Cohen SS, Fowke JH, Han X, Xiao Q, Buchowski MS, et al. Physical activity, sedentary behavior, and cause-specific mortality in black and white adults in the southern community cohort study. Am J Epidemiol. 2014;180(4):394–405.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Patel AV, Bernstein L, Deka A, Feigelson HS, Campbell PT, Gapstur SM, et al. Leisure time spent sitting in relation to total mortality in a prospective cohort of US adults. Am J Epidemiol. 2010;172(4):419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seguin R, Buchner DM, Liu J, Allison M, Manini T, Wang CY, et al. Sedentary behavior and mortality in older women: the Women’s Health Initiative. Am J Prev Med. 2014;46(2):122–35.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wijndaele K, Brage S, Besson H, Khaw KT, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk study. Int J Epidemiol. 2011;40(1):150–9.

    Article  PubMed  Google Scholar 

  47. Campbell PT, Patel AV, Newton C, Jacobs E, Gapstur SM. Associations of recreational physical activity and leisure time spent sitting with colorectal cancer survival. J Clin Oncol. 2013;31(7):876–85.

    Article  PubMed  Google Scholar 

  48. Arem H, Pfeiffer RM, Engels EA, Alfano CM, Hollenbeck A, Park Y, et al. Pre- and postdiagnosis physical activity, television viewing, and mortality among patients with colorectal cancer in the National Institutes of Health-AARP Diet and Health Study. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(2):180–8.

    Article  Google Scholar 

  49. Cao Y, Meyerhardt JA, Chan AT, Wu K, Fuchs CS, Giovannucci EL. Television watching and colorectal cancer survival in men. Cancer Causes Control. 2015;26(10):1467–76.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Olsen CM, Wilson LF, Nagle CM, Kendall BJ, Bain CJ, Pandeya N, et al. Cancers in Australia in 2010 attributable to insufficient physical activity. Aust N Z J Public Health. 2015;39(5):458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Muller DC, Murphy N, Johansson M, Ferrari P, Tsilidis KK, Boutron-Ruault MC, et al. Modifiable causes of premature death in middle-age in Western Europe: results from the EPIC cohort study. BMC Med. 2016;14:87.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim Y, Welk GJ. The accuracy of the 24-h activity recall method for assessing sedentary behaviour: the physical activity measurement survey (PAMS) project. J Sports Sci. 2017;35(3):255–61.

    Article  PubMed  Google Scholar 

  53. Ainsworth BE, Caspersen CJ, Matthews CE, Masse LC, Baranowski T, Zhu W. Recommendations to improve the accuracy of estimates of physical activity derived from self report. J Phys Act Health. 2012;9(1):S76–84.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ballard-Barbash R, Hunsberger S, Alciati MH, Blair SN, Goodwin PJ, McTiernan A, et al. Physical activity, weight control, and breast cancer risk and survival: clinical trial rationale and design considerations. J Natl Cancer Inst. 2009;101(9):630–43.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Courneya KS, Booth CM, Gill S, O’Brien P, Vardy J, Friedenreich CM, et al. The colon health and life-long exercise change trial: a randomized trial of the National Cancer Institute of Canada Clinical Trials Group. Curr Oncol. 2008;15(6):262–70.

    Article  Google Scholar 

  56. Neilson HK, Friedenreich CM, Brockton NT, Millikan RC. Physical activity and postmenopausal breast cancer: proposed biologic mechanisms and areas for future research. Cancer Epidemiol Biomark Prev. 2009;18(1):11–27.

    Article  CAS  Google Scholar 

  57. van Kruijsdijk RCM, van der Wall E, Visseren FLJ. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomark Prev. 2009;18(10):2569–78.

    Article  CAS  Google Scholar 

  58. Arnold M, Pandeya N, Byrnes G, Renehan AG, Stevens GA, Ezzati M, et al. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015;16(1):36–46.

    Article  PubMed  Google Scholar 

  59. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body fatness and cancer—viewpoint of the IARC Working Group. N Engl J Med. 2016;375(8):794–8.

    Article  PubMed  Google Scholar 

  60. Neilson HK, Conroy SM, Friedenreich CM. The influence of energetic factors on biomarkers of postmenopausal breast cancer risk. Curr Nutr Rep. 2014;3:22–34.

    Article  CAS  PubMed  Google Scholar 

  61. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    Article  PubMed  Google Scholar 

  62. Slentz CA, Bateman LA, Willis LH, Shields AT, Tanner CJ, Piner LW, et al. Effects of aerobic vs. resistance training on visceral and liver fat stores, liver enzymes, and insulin resistance by HOMA in overweight adults from STRRIDE AT/RT. Am J Phys Endocrinol Metab. 2011;301(5):E1033–9.

    Article  CAS  Google Scholar 

  63. Lynch BM. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomark Prev. 2010;19(11):2691–709.

    Article  Google Scholar 

  64. Ball K, Brown W, Crawford D. Who does not gain weight? Prevalence and predictors of weight maintenance in young women. Int J Obes. 2002;26(12):1570–8.

    Article  CAS  Google Scholar 

  65. Blanck HM, McCullough ML, Patel AV, Gillespie C, Calle EE, Cokkinides VE, et al. Sedentary behavior, recreational physical activity, and 7-year weight gain among postmenopausal US women. Obesity. 2007;15(6):1578–88.

    Article  PubMed  Google Scholar 

  66. Ekelund U, Brage S, Besson H, Sharp S, Wareham NJ. Time spent being sedentary and weight gain in healthy adults: reverse or bidirectional causality? Am J Clin Nutr. 2008;88:612–7.

    CAS  PubMed  Google Scholar 

  67. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65.

    Article  CAS  PubMed  Google Scholar 

  68. Renehan AG, Zwahlen M, Egger M. Adiposity and cancer risk: new mechanistic insights from epidemiology. Nat Rev Cancer. 2015;15(8):484–98.

    Article  CAS  PubMed  Google Scholar 

  69. McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8:205–11.

    Article  CAS  PubMed  Google Scholar 

  70. Kendall A, Folkerd EJ, Dowsett M. Influences on circulating oestrogens in postmenopausal women: relationship with breast cancer. J Steroid Biochem Mol Biol. 2007;103:99–109.

    Article  CAS  PubMed  Google Scholar 

  71. Lukanova A, Kaaks R. Endogenous hormones and ovarian cancer: epidemiology and curent hypotheses. Cancer Epidemiol Biomark Prev. 2005;14(1):98–107.

    CAS  Google Scholar 

  72. Pou KM, Massaro JM, Hoffman U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress. Framingham Heart Study. Ciculation. 2007;116:1234–41.

    Article  CAS  Google Scholar 

  73. Thomas RJ, Kenfield SA, Jimenez A. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review. Br J Sports Med. 2017;51(8):640–4.

  74. Dallal CM, Brinton LA, Matthews CE, Pfeiffer RM, Hartman TJ, Lissowska J, et al. Association of active and sedentary behaviors with postmenopausal estrogen metabolism. Med Sci Sports Exerc. 2016;48(3):439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tworoger SS, Missmer SA, Eliassen AH, Barbieri RL, Dowsett M, Hankinson SE. Physical activity and inactivity in relation to sex hormone, prolactin, and insulin-like growth factor concentrations in premenopausal women—exercise and premenopausal hormones. Cancer Causes Control. 2007;18(7):743–52.

    Article  PubMed  Google Scholar 

  76. Stephens BR, Granados K, Zderic TW, Hamilton MT, Braun B. Effects of 1 day of inactivity on insulin action in healthy men and women: interaction with energy intake. Metab Clin Exp. 2011;60(7):941–9.

    Article  CAS  PubMed  Google Scholar 

  77. Xue F, Michels KB. Diabetes, metabolic syndrome, and breast cancer: a review of the current evidence. Am J Clin Nutr. 2007;86(Suppl):823S–35S.

    CAS  Google Scholar 

  78. Johnson JA, Carstensen B, Witte D, Bowker SL, Lipscombe L, Renehan AG. Diabetes and cancer (1): evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia. 2012;55(6):1607–18.

    Article  CAS  PubMed  Google Scholar 

  79. Sax AT, Jenkins DG, Devin JL, Hughes GI, Bolam KA, Skinner TL. The insulin-like growth factor axis: a biological mechanism linking physical activity to colorectal cancer survival. Cancer Epidemiol. 2014;38(4):455–9.

    Article  PubMed  Google Scholar 

  80. Haydon AMM, MacInnis RJ, English DR, Morris H, Giles GG. Physical activity, insulin-like growth factor 1, insulin-like growth factor binding protein 3, and survival from colorectal cancer. Gut. 2006;55:689–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tomeleri CM, Ribeiro AS, Souza MF, Schiavoni D, Schoenfeld BJ, Venturini D, et al. Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: a randomized controlled trial. Exp Gerontol. 2016;84:80–7.

    Article  CAS  PubMed  Google Scholar 

  82. Johannsen NM, Sparks LM, Zhang Z, Earnest CP, Smith SR, Church TS, et al. Determinants of the changes in glycemic control with exercise training in type 2 diabetes: a randomized trial. PLoS One. 2013;8(6):e62973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Conceicao MS, Bonganha V, Vechin FC, Berton RP, Lixandrao ME, Nogueira FR, et al. Sixteen weeks of resistance training can decrease the risk of metabolic syndrome in healthy postmenopausal women. Clin Interv Aging. 2013;8:1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Henson J, Dunstan DW, Davies MJ, Yates T. Sedentary behaviour as a new behavioural target in the prevention and treatment of type 2 diabetes. Diabetes Metab Res Rev. 2016;32(Suppl 1):213–20.

    Article  PubMed  Google Scholar 

  85. Dempsey PC, Owen N, Yates TE, Kingwell BA, Dunstan DW. Sitting less and moving more: improved glycaemic control for type 2 diabetes prevention and management. Curr Diab Rep. 2016;16(11):114.

    Article  PubMed  CAS  Google Scholar 

  86. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905.

    Article  CAS  PubMed  Google Scholar 

  87. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer. 2009;16(4):1103–23.

    Article  CAS  PubMed  Google Scholar 

  88. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60(4):207–21.

    Article  PubMed  Google Scholar 

  89. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Antuna-Puente B, Feve B, Fellahi S, Bastard J-P. Adipokines: the missing link between insulin resistance and obesity. Diabete Metab. 2008;34:2–11.

    Article  CAS  PubMed  Google Scholar 

  91. Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior. Curr Cardiovasc Risk Rep. 2008;2:293–8.

    Article  Google Scholar 

  92. Henson J, Yates T, Edwardson CL, Khunti K, Talbot D, Gray LJ, et al. Sedentary time and markers of chronic low-grade inflammation in a high risk population. PLoS One. 2013;8(10):e78350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lynch BM, Friedenreich CM, Winkler EA, Healy GN, Vallance JK, Eakin EG, et al. Associations of objectively assessed physical activity and sedentary time with biomarkers of breast cancer risk in postmenopausal women: findings from NHANES (2003-2006). Breast Cancer Res Treat. 2011;130(1):183–94.

    Article  PubMed  Google Scholar 

  94. Healy GN, Matthews CE, Dunstan DW, Winkler EAH, Owen N. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur Heart J. 2011;32(5):590–7.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hamer M, Smith L, Stamatakis E. Prospective association of TV viewing with acute phase reactants and coagulation markers: English Longitudinal Study of Ageing. Atherosclerosis. 2015;239(2):322–7.

    Article  CAS  PubMed  Google Scholar 

  96. Fung TT, Hu FB, Yu J, Chu NF, Spiegelman D, Tofler GH, et al. Leisure-time physical activity, television watching, and plasma biomarkers of obesity and cardiovascular disease risk. Am J Epidemiol. 2000;152(12):1171–8.

    Article  CAS  PubMed  Google Scholar 

  97. Aoi W, Naito Y, Takagi T, Tanimura Y, Takanami Y, Kawai Y, et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut. 2013;62(6):882–9.

    Article  CAS  PubMed  Google Scholar 

  98. Dethlefsen C, Pedersen KS, Hojman P. Every exercise bout matters: linking systemic exercise responses to breast cancer control. Breast Cancer Res Treat. 2017;162(3):399–408.

    Article  PubMed  Google Scholar 

  99. Hojman P, Dethlefsen C, Brandt C, Hansen J, Pedersen L, Pedersen BK. Exercise-induced muscle-derived cytokines inhibit mammary cancer cell growth. Am J Phys Endocrinol Metab. 2011;301(3):E504–10.

    Article  CAS  Google Scholar 

  100. Gannon NP, Vaughan RA, Garcia-Smith R, Bisoffi M, Trujillo KA. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int J Cancer J Int Cancer. 2015;136(4):E197–202.

    Article  CAS  Google Scholar 

  101. Chlenski A, Guerrero LJ, Peddinti R, Spitz JA, Leonhardt PT, Yang Q, et al. Anti-angiogenic SPARC peptides inhibit progression of neuroblastoma tumors. Mol Cancer. 2010;9:138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2012;62(1):30–67.

    Article  PubMed  Google Scholar 

  104. Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL, et al. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin. 2012;62(4):243–74.

    Article  PubMed  Google Scholar 

  105. Doherty A, Jackson D, Hammerla N, Plotz T, Olivier P, Granat MH, et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank Study. PLoS One. 2017;12(2):e0169649.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chastin SF, Palarea-Albaladejo J, Dontje ML, Skelton DA. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: a novel compositional data analysis approach. PLoS One. 2015;10(10):e0139984.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Lin SH, Young J, Logan R, Tchetgen Tchetgen EJ, VanderWeele TJ. Parametric mediational g-formula approach to mediation analysis with time-varying exposures, mediators, and confounders. Epidemiology. 2017;28(2):266–74.

    Article  PubMed  Google Scholar 

  108. Keil AP, Edwards JK, Richardson DB, Naimi AI, Cole SR. The parametric g-formula for time-to-event data: intuition and a worked example. Epidemiology. 2014;25(6):889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  109. De Stavola BL, Daniel RM. Marginal structural models: the way forward for life-course epidemiology? Epidemiology. 2012;23(2):233–7.

    Article  PubMed  Google Scholar 

  110. Lynch BM, Dunstan DW, Vallance JK, Owen N. Don’t take cancer sitting down: a new survivorship research agenda. Cancer. 2013;119(11):1928–35.

    Article  PubMed  Google Scholar 

  111. Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, Alfano CM. Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J Natl Cancer Inst. 2012;104(11):815–40.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Burgess S, Timpson NJ, Ebrahim S, Davey SG. Mendelian randomization: where are we now and where are we going? Int J Epidemiol. 2015;44(2):379–88.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Brigid M. Lynch is funded by a National Breast Cancer Foundation Fellowship (ECF-15-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Leitzmann.

Ethics declarations

Conflict of Interest

Michael F. Leitzmann declares no potential conflict of interest.

Brigid M. Lynch reports personal fees from Human Kinetics Inc. outside the submitted work.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lynch, B.M., Leitzmann, M.F. An Evaluation of the Evidence Relating to Physical Inactivity, Sedentary Behavior, and Cancer Incidence and Mortality. Curr Epidemiol Rep 4, 221–231 (2017). https://doi.org/10.1007/s40471-017-0119-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-017-0119-7

Keywords

Navigation