Skip to main content
Log in

Prescription Opioid Fatalities: Examining Why the Healer Could be the Culprit

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Prescription opioid use has increased rapidly in developed countries, as have fatalities and other related adverse events. This review examines the intrinsic characteristics of opioids, including their mechanisms of action and pharmacokinetic and pharmacodynamic properties, to determine how the use of a regonised pharmacological remedy for a medically confirmed ailment could result in an accidental fatality. Opioids trigger biological processes that inhibit their own therapeutic effect. Prolonged use of opioids can result in activation of pronociceptive systems, leading to opioid-induced hyperalgesia and tolerance, while opioid metabolites can antagonise the antinociceptive action of the parent drug, also leading to opioid-induced hyperalgesia and tolerance. Pain stimulates respiration and counteracts the respiratory depression effect of opioids. Analgesia from opioids leads to loss of this protective mechanism, leading to increased risk of death due to respiratory failure. Increased patient counseling during opioid prescribing and dispensing, and limiting prescription to short-term use in non-malignant pain, may decrease the adverse effects of opioids. The vast majority of patients who unintentionally experience serious adverse events from pharmaceutical opioids do not start out as drug seekers. Even opioid use within prescribing guidelines can place some patients at risk of death and may prevent patients from seeking help for prescription opioid dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paul LS Jr. Opium and its alkaloids. Am J Pharm Educ. 2002;66(2):186.

    Google Scholar 

  2. Kalant H. Opium revisited: a brief review of its nature, composition, non-medical use and relative risks. Addiction. 1997;92(3):267–77.

    CAS  PubMed  Google Scholar 

  3. Rang HP, Dale MM, Flower RJ, Henderson G. Rang and Dale’s pharmacology. United Kingdom: Elsevier; 2016.

    Google Scholar 

  4. Brown JLS. Substance abuse and America: historical perspective on the federal response to a social phenomenon. J Natl Med Assoc. 1981;73(6):497–506.

    PubMed  PubMed Central  Google Scholar 

  5. Ashburn MA, Caplan R, Carr D, Connis R, Ginsberg B, Green CR, et al. Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology. 2012;116(2):248–73.

    Article  Google Scholar 

  6. Horlocker TT, Kopp LS, Pagnano WM, Hebl RJ. Analgesia for total hip and knee arthroplasty: a multimodal pathway featuring peripheral nerve block. J Am Acad Orthop Surg. 2006;14(3):126–35.

    Article  PubMed  Google Scholar 

  7. Gan TJ, Habib AS, Miller TE, White W, Apfelbaum JL. Incidence, patient satisfaction, and perceptions of post-surgical pain: results from a US national survey. Curr Med Res Opin. 2014;30(1):149–60.

    Article  PubMed  Google Scholar 

  8. International Pain Summit of the International Association for the Study of Pain. Declaration of montréal: declaration that access to pain management is a fundamental human right. J Pain Palliat Care Pharmacother. 2011;25(1):29–31.

    Article  CAS  PubMed  Google Scholar 

  9. Paulozzi LJ, Jones CM, Mark KA, Rudd RA. Vital signs: overdoses of prescription opioid pain relievers—United States, 1999–2008. MMWR Morb Mortal Wkly Rep. 2011;60(43):1487–92.

    Google Scholar 

  10. CDC. Prescription Opioid Overdose Data. Drug Overdose. CDC Injury Center 2017 [cited 20 Oct 2017]. Available at: https://www.cdc.gov/drugoverdose/data/overdose.html.

  11. National Institute on Drug abuse. Opioid crisis 2017 [cited 21 Aug 2017]. Available at: https://www.drugabuse.gov/drugs-abuse/opioids/opioid-crisis.

  12. Hollingworth SA, Gray PD, Hall WD, Najman JM. Opioid analgesic prescribing in Australia: a focus on gender and age. Pharmacoepidemiol Drug Saf. 2015;24(6):628–36.

    Article  CAS  PubMed  Google Scholar 

  13. Institute Penington. Australia’s annual overdose report 2017. Carlton: Penington Institute; 2017.

    Google Scholar 

  14. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, Fifth Edition (DSM-5). Washington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  15. Bovill JG. Mechanisms of actions of opioids and non-steroidal anti-inflammatory drugs. Eur J Anaesthesiol. 1997;14(Suppl 15):9–15.

    Article  CAS  Google Scholar 

  16. Fong A, Schug SA. Pathophysiology of pain: a practical primer. Plast Reconstr Surg. 2014;134(4 Suppl 2):8S–14S.

    Article  CAS  PubMed  Google Scholar 

  17. Hall JE, Guyton AC. Guyton and Hall textbook of medical physiology. Philadelphia: Elsevier; 2016.

    Google Scholar 

  18. Jusino E, Chien GC, Minzter BH. Mechanisms of chronic pain. In: Pope JE, Deer TR, editors. Treatment of chronic pain conditions: a comprehensive handbook. New York: Springer; 2017. p. 5–6.

    Chapter  Google Scholar 

  19. Walk D, Poliak-Tunis M. Chronic pain management: an overview of taxonomy, conditions commonly encountered, and assessment. Med Clin North Am. 2016;100(1):1–16.

    Article  PubMed  Google Scholar 

  20. Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain-United States, 2016. JAMA. 2016;315(15):1624–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomes T, Juurlink DN, Dhalla IA, Mailis-Gagnon A, Paterson JM, Mamdani MM. Trends in opioid use and dosing among socio-economically disadvantaged patients. Open Med. 2011;5(1):e13–22.

    PubMed  PubMed Central  Google Scholar 

  22. Krebs EE, Gravely A, Nugent S, et al. Effect of opioid vs nonopioid medications on pain-related function in patients with chronic back pain or hip or knee osteoarthritis pain: the space randomized clinical trial. JAMA. 2018;319(9):872–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reinecke H, Weber C, Lange K, Simon M, Stein C, Sorgatz H. Analgesic efficacy of opioids in chronic pain: recent meta-analyses. Br J Pharmacol. 2015;172(2):324–33.

    Article  CAS  PubMed  Google Scholar 

  24. Gustorff B, Dorner T, Likar R, Grisold W, Lawrence K, Schwarz F, et al. Prevalence of self-reported neuropathic pain and impact on quality of life: a prospective representative survey. Acta Anaesthesiol Scand. 2008;52(1):132–6.

    Article  CAS  PubMed  Google Scholar 

  25. Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current Research on Opioid Receptor Function. Curr Drug Targets. 2012;13(2):230–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pasternak GW. Opioids and their receptors: are we there yet? Neuropharmacology. 2014;76:198–203.

    Article  CAS  PubMed  Google Scholar 

  27. Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend. 2010;108(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  28. Bekhit MH. Opioid-induced hyperalgesia and tolerance. Am J Ther. 2010;17(5):498–510.

    Article  PubMed  Google Scholar 

  29. Benarroch EE. Endogenous opioid systems: current concepts and clinical correlations. Neurology. 2012;79(8):807.

    Article  PubMed  Google Scholar 

  30. Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands. Curr Top Med Chem. 2004;4(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  31. Avidor-Reiss T, Nevo I, Levy R, Pfeuffer T, Vogel Z. Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma. J Biol Chem. 1996;271(35):21309.

    Article  CAS  PubMed  Google Scholar 

  32. Chakrabarti S, Rivera M, Yan SZ, Tang WJ, Gintzler AR. Chronic morphine augments G(beta)(gamma)/Gs(alpha) stimulation of adenylyl cyclase: relevance to opioid tolerance. Mol Pharmacol. 1998;54(4):655.

    CAS  PubMed  Google Scholar 

  33. Wang H-Y, Burns LH. Gbetagamma that interacts with adenylyl cyclase in opioid tolerance originates from a Gs protein. J Neurobiol. 2006;66(12):1302.

    Article  CAS  PubMed  Google Scholar 

  34. Edlund JM, Martin CB, Russo EJ, Devries BA, Braden DJ, Sullivan DM. The role of opioid prescription in incident opioid abuse and dependence among individuals with chronic noncancer pain: the role of opioid prescription. Clin J Pain. 2014;30(7):557–64.

    PubMed  PubMed Central  Google Scholar 

  35. Christopoulos A. Advances in G protein-coupled receptor allostery: from function to structure. Mol Pharmacol. 2014;86(5):463.

    Article  PubMed  CAS  Google Scholar 

  36. Palczewski K, Orban T. From atomic structures to neuronal functions of g protein-coupled receptors. Annu Rev Neurosci. 2013;36:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baillie LD, Schmidhammer H, Mulligan SJ. Peripheral μ-opioid receptor mediated inhibition of calcium signaling and action potential-evoked calcium fluorescent transients in primary afferent CGRP nociceptive terminals. Neuropharmacology. 2015;93:267–73.

    Article  CAS  PubMed  Google Scholar 

  38. Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, et al. The concise guide to pharmacology 2013/14: G protein-coupled receptors. Br J Pharmacol. 2013;170(8):1459–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, et al. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014;511(7511):557.

    Article  PubMed  CAS  Google Scholar 

  40. Strosberg AD, Nahmias C. G-protein-coupled receptor signalling through protein networks. Biochem Soc Trans. 2007;35(Pt 1):23.

    Article  CAS  PubMed  Google Scholar 

  41. Salon JA, Lodowski DT, Palczewski K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev. 2011;63(4):901–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boron WF. Medical physiology. Amsterdam: Elsevier; 2015.

    Google Scholar 

  43. Turner RW, Anderson D, Zamponi GW. Signaling complexes of voltage-gated calcium channels. Channels. 2011;5(5):440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Todorovic SM, Jevtovic-Todorovic V. T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol. 2011;163(3):484–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fletcher D, Martinez V. Opioid-induced hyperalgesia in patients after surgery: a systematic review and a meta-analysis. Br J Anaesth. 2014;112(6):991–1004.

    Article  CAS  PubMed  Google Scholar 

  46. Hooten WM, Lamer TJ, Twyner C. Opioid-induced hyperalgesia in community-dwelling adults with chronic pain. Pain. 2015;156(6):1145.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. AAPS J. 2008;10(4):537–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cesselin F. Opioid and anti-opioid peptides. Fundam Clin Pharmacol. 1995;9(5):409.

    Article  CAS  PubMed  Google Scholar 

  49. Gustafsson H, Afrah A, Brodin E, Stiller CO. Pharmacological characterization of morphine-induced in vivo release of cholecystokinin in rat dorsal horn: effects of ion channel blockers. J Neurochem. 1999;73(3):1145–54.

    Article  CAS  PubMed  Google Scholar 

  50. Faris PL, Komisaruk BR, Watkins LR, Mayer DJ. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science. 1983;219(4582):310–2.

    Article  CAS  PubMed  Google Scholar 

  51. Wang XJ, Wang XH, Han JS. Cholecystokinin octapeptide antagonized opioid analgesia mediated by mu- and kappa- but not delta-receptors in the spinal cord of the rat. Brain Res. 1990;523(1):5.

    Article  CAS  PubMed  Google Scholar 

  52. Longo DL, Compton WM, Jones CM, Baldwin GT. Relationship between nonmedical prescription-opioid use and heroin use. N Engl J Med. 2016;374(2):154–63.

    Article  CAS  Google Scholar 

  53. Roeckel L-A, Le Coz G-M, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience. 2016;338:160–82.

    Article  CAS  PubMed  Google Scholar 

  54. Hesselink DA, Schaik RH, Heiden IP, Werf M, Gregoor PJ, Lindemans J, et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther. 2003;74(3):245–54.

    Article  CAS  PubMed  Google Scholar 

  55. Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbé L, et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an adult aids clinical trials group study. J Infect Dis. 2005;192(11):1931–42.

    Article  CAS  PubMed  Google Scholar 

  56. Bernard S, Neville KA, Nguyen AT, Flockhart DA. Interethnic differences in genetic polymorphisms of CYP2D6 in the US population: clinical implications. Oncologist. 2006;11(2):126–35.

    Article  CAS  PubMed  Google Scholar 

  57. Codeine sulfate. In: IBM Micromedex®. In depth answers 2017 (electronic version) [cited 18 October 2017]. Truven Health Analytics, Greenwood Village, Colorado, USA. Available at: http://www.micromedexsolutions.com/.

  58. Crews KR, Gaedigk A, Dunnenberger HM, Leeder JS, Klein TE, Caudle KE, et al. Clinical pharmacogenetics implementation consortium guidelines for cytochrome P450 2D6 genotype and codeine therapy: 2014 update. Clin Pharmacol Ther. 2014;95(4):376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Connor JP, Feeney GFX, Kelly AB, Saunders JB. Polysubstance use. In: Wolff K, White J, Karch S, editors. The SAGE handbook of drug and alcohol studies. 2nd ed. California: Sage Publications; 2016. p. 283–305.

    Chapter  Google Scholar 

  60. Smith HS. Opioid metabolism. Mayo Clin Proc. 2009;84(7):613–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Davis GG. Drug abuse: newly-emerging drugs and trends. Clin Lab Med. 2012;32(3):407–14.

    Article  PubMed  Google Scholar 

  62. Metz VE, Comer SD. Opioids: a discussion of pharmacokinetics and pharmacodynamics in those who misuse drugs. In: Wolff K, White J, Karch S, editors. The Sage handbook of drug and alcohol studies. 2nd ed. California: SAGE PublicationS; 2016.

    Google Scholar 

  63. Brown SM, Campbell SD, Crafford A, Regina KJ, Holtzman MJ, Kharasch ED. P-glycoprotein is a major determinant of norbuprenorphine brain exposure and antinociception. J Pharmacol Exp Ther. 2012;343(1):53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lötsch J, Skarke C, Liefhold J, Geisslinger G. Genetic predictors of the clinical response to opioid analgesics. Clin Pharmacokinet. 2004;43(14):983–1013.

    Article  PubMed  Google Scholar 

  65. Aquilante CL, Letrent SP, Pollack GM, Brouwer KL. Increased brain P-glycoprotein in morphine tolerant rats. Life Sci. 2000;66(4):PL47.

    CAS  PubMed  Google Scholar 

  66. Bauer BR, Yang X, Anika MSH, Olson ER, Zhao R, Kalvass JC, et al. In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol. 2006;70(4):1212–9.

    Article  CAS  PubMed  Google Scholar 

  67. Lee H-K, Lewis LD, Tsongalis GJ, McMullin M, Schur BC, Wong SH, et al. Negative urine opioid screening caused by rifampin-mediated induction of oxycodone hepatic metabolism. Clin Chim Acta. 2006;367(1):196–200.

    Article  CAS  PubMed  Google Scholar 

  68. Nieminen TH. Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology. 2009;110(6):1371–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mercer SL, Coop A. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem. 2011;11(9):1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smith M. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol. 2000;27(7):524–8.

    Article  CAS  PubMed  Google Scholar 

  71. Mercadante S. Pathophysiology and treatment of opioid-related myoclonus in cancer patients. Pain. 1998;74(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  72. Sjøgren P, Jonsson T, Jensen N-H, Jensen TS, Drenck N-E. Hyperalgesia and myoclonus in terminal cancer patients treated with continuous intravenous morphine. Pain. 1993;55(1):93–7.

    Article  PubMed  Google Scholar 

  73. Liang DY, Li X, Clark JD. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain. 2013;14(1):36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology. 2006;104(3):570–87.

    Article  CAS  PubMed  Google Scholar 

  75. Sharma SK, Klee WA, Nirenberg M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA. 1975;72(8):3092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. María R-M, Pilar S-B, Ana V-S, Esther B, Javier G. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2011;37(2):338.

    Google Scholar 

  77. Rivat C, Laulin J-P, Corcuff J-B, Célèrier E, Pain L, Simonnet G. Fentanyl enhancement of carrageenan-induced long-lasting hyperalgesia in rats: prevention by the N-methyl-D-aspartate receptor antagonist ketamine. Anesthesiology. 2002;96(2):381–91.

    Article  CAS  PubMed  Google Scholar 

  78. Salter MW. Cellular neuroplasticity mechanisms mediating pain persistence. J Orofac Pain. 2004;18(4):318.

    PubMed  Google Scholar 

  79. Hellier JL, Grosshans DR, Coultrap SJ, Jones JP, Dobelis P, Browning MD, et al. NMDA receptor trafficking at recurrent synapses stabilizes the state of the CA3 network. J Neurophysiol. 2007;98(5):2818–26.

    Article  CAS  PubMed  Google Scholar 

  80. Hunt DL, Castillo PE. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol. 2012;22(3):496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nelson SB, Turrigiano GG. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107.

    Article  PubMed  CAS  Google Scholar 

  82. Pérez-Otaño I, Ehlers MD. Homeostatic plasticity and NMDA receptor trafficking. Trends Neurosci. 2005;28(5):229–38.

    Article  PubMed  CAS  Google Scholar 

  83. Pozo K, Goda Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron. 2010;66(3):337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Spanagel R, Weiss F. The dopamine hypothesis of reward: past and current status. Trends Neurosci. 1999;22(11):521–7.

    Article  CAS  PubMed  Google Scholar 

  85. Eshel N, Tian J, Bukwich M, Uchida N. Dopamine neurons share common response function for reward prediction error. Nat Neurosci. 2016;19(3):479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hamid AA, Pettibone JR, Mabrouk OS, Hetrick VL, Schmidt R, Vander Weele CM, et al. Mesolimbic dopamine signals the value of work. Nat Neurosci. 2016;19(1):117.

    Article  CAS  PubMed  Google Scholar 

  87. Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci. 2015;38(4):217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freeman SM. The relationship of opioid treatment in chronic pain conditions: implications on brain reward response. J Addict Nurs. 2004;15(1):3–10.

    Google Scholar 

  89. Grant JE, Chamberlain SR. Impulsive action and impulsive choice across substance and behavioral addictions: cause or consequence? Addict Behav. 2014;39(11):1632.

    Article  PubMed  Google Scholar 

  90. Australian Medicines Handbook. Opioid analgesics. In: Australian Medicines Handbook 2018. Adelaide, SA: Australian Medicines Handbook Pty Ltd. Available at: https://amhonline.amh.net.au/.

  91. Pattinson K. Opioids and the control of respiration. Br J Anaesth. 2008;100(6):747–58.

    Article  CAS  PubMed  Google Scholar 

  92. Böhm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW. Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem. 1996;271(36):22003–16.

    Article  PubMed  Google Scholar 

  93. Garland A, Grady E, Lovett M, Vigna S, Frucht M, Krause J, et al. Mechanisms of desensitization and resensitization of G protein-coupled neurokinin1 and neurokinin2 receptors. Mol Pharmacol. 1996;49(3):438–46.

    CAS  PubMed  Google Scholar 

  94. White JM, Irvine RJ. Mechanisms of fatal opioid overdose. Addiction. 1999;94(7):961–72.

    Article  CAS  PubMed  Google Scholar 

  95. Adewumi A, Hollingworth S, Maravilla J, Connor J, Alati R. Prescribed dose of opioids and overdose: a systematic review and meta-analysis of unintentional prescription opioid overdose. CNS Drugs. 2018;32(2):101–16.

    Article  CAS  PubMed  Google Scholar 

  96. Berge KH, Burkle CM. Opioid overdose: when good drugs break bad. Mayo Clin Proc. 2014;89(4):437–9.

    Article  PubMed  Google Scholar 

  97. Darke S, Farrell M. Would legalizing illicit opioids reduce overdose fatalities? Implications from a natural experiment. Addiction. 2014;109(8):1237–42.

    Article  PubMed  Google Scholar 

  98. Longo DL, Volkow ND, McLellan AT. Opioid abuse in chronic pain—misconceptions and mitigation strategies. N Engl J Med. 2016;374(13):1253–63.

    Article  CAS  Google Scholar 

  99. Jones CM, Paulozzi LJ, Mack KA. Alcohol involvement in opioid pain reliever and benzodiazepine drug abuse-related emergency department visits and drug-related deaths—United States, 2010. MMWR Morb Mortal Wkly Rep. 2014;63(40):881–5.

    PubMed  PubMed Central  Google Scholar 

  100. Sorg MH, Long DL, Abate MA, Kaplan JA, Kraner JC, Greenwald MS, et al. Additive effects of cointoxicants in single-opioid induced deaths. Acad Forensic Pathol. 2016;6(3):532–42.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ling GS, Paul D, Simantov R, Pasternak GW. Differential development of acute tolerance to analgesia, respiratory depression, gastrointestinal transit and hormone release in a morphine infusion model. Life Sci. 1989;45(18):1627–36.

    Article  CAS  PubMed  Google Scholar 

  102. Benedetti F, Amanzio M, Baldi S, Casadio C, Cavallo A, Mancuso M, et al. The specific effects of prior opioid exposure on placebo analgesia and placebo respiratory depression. Pain. 1998;75(2):313–9.

    Article  CAS  PubMed  Google Scholar 

  103. Iwabe T, Ozaki I, Hashizume A. The respiratory cycle modulates brain potentials, sympathetic activity, and subjective pain sensation induced by noxious stimulation. Neurosci Res. 2014;84:47–59.

    Article  PubMed  Google Scholar 

  104. Zautra AJ, Fasman R, Davis MC, Craig AD. The effects of slow breathing on affective responses to pain stimuli: an experimental study. Pain. 2010;149(1):12–8.

    Article  PubMed  Google Scholar 

  105. Borgbjerg FM, Nielsen K, Franks J. Experimental pain stimulates respiration and attenuates morphine-induced respiratory depression: a controlled study in human volunteers. Pain. 1996;64(1):123.

    Article  CAS  PubMed  Google Scholar 

  106. Bourke DL. Respiratory effects of regional anesthesia during acute pain. Reg Anesth. 1993;18(6):361.

    CAS  PubMed  Google Scholar 

  107. System National Coronial Information. Opioids related deaths in Australia (2007–2011). Melbourne: National Coronial Information System; 2014. p. 1–20.

    Google Scholar 

  108. Mercer SL, Coop A. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance. Curr Top Med Chem. 2011;11(9):1157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Mr. Glen Tapley, Director of Pharmacy, Maryborough Hospital, for approving the time needed to complete this project.

Author information

Authors and Affiliations

Authors

Contributions

ADA had full access to all the data in the study and takes responsibility for the integrity of the data and accuracy of the information. Concept and design: ADA, JPC, RA. Acquisition and analysis of data: ADA. Interpretation of data: ADA, CES. Drafting of manuscript: ADA. Critical revision of the manuscript for intellectual content: CES, SH, JPC, RA. Technical and material support: SH, JPC, RA. Supervision: SH, JPC, RA. Final approval of the version to be published: CES, SH, JPC, RA.

Corresponding author

Correspondence to Adeleke D. Adewumi.

Ethics declarations

Conflicts of interest

Adeleke D. Adewumi was supported by an Australian Government Research Training Program (RTP) scholarship. The funder had no role in the design or conduct of this study, including the acquisition, analysis, and interpretation of data, or in the preparation, review, or approval of the manuscript or the decision to submit it for publication. No other conflicts of interest were declared by authors Christine E. Staatz, Samantha A. Hollingworth, Jason P. Connor and Rosa Alati.

Funding

The authors have no other sources of funding to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewumi, A.D., Staatz, C.E., Hollingworth, S.A. et al. Prescription Opioid Fatalities: Examining Why the Healer Could be the Culprit. Drug Saf 41, 1023–1033 (2018). https://doi.org/10.1007/s40264-018-0687-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-018-0687-6

Navigation