Skip to main content
Log in

Evaluation of detector material and radiation source position on Compton camera’s ability for multitracer imaging

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

We present a study on the effects of detector material, radionuclide source and source position on the Compton camera aimed at realistic characterization of the camera’s performance in multitracer imaging as it relates to brain imaging. The GEANT4 Monte Carlo simulation software was used to model the physics of radiation transport and interactions with matter. Silicon (Si) and germanium (Ge) detectors were evaluated for the scatterer, and cadmium zinc telluride (CZT) and cerium-doped lanthanum bromide (LaBr3:Ce) were considered for the absorber. Image quality analyses suggest that the use of Si as the scatterer and CZT as the absorber would be preferred. Nevertheless, two simulated Compton camera models (Si/CZT and Si/LaBr3:Ce Compton cameras) that are considered in this study demonstrated good capabilities for multitracer imaging in that four radiotracers within the nuclear medicine energy range are clearly visualized by the cameras. It is found however that beyond a range difference of about 2 cm for 113mIn and 18F radiotracers in a brain phantom, there may be a need to rotate the Compton camera for efficient brain imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang L, Rogers WL, Clinthorne NH (2004) Potential of a Compton camera for high performance scintimammography. Phys Med Biol 49:617–638

    Article  PubMed  Google Scholar 

  2. Singh M (1983) An electronically collimated gamma camera for single photon emission computed tomography. Part I: theoretical considerations and design criteria. Med Phys 10:421–427

    Article  PubMed  CAS  Google Scholar 

  3. Smith B (2005) Reconstruction methods and completeness conditions for two Compton data models. J Opt Soc Am A Opt Phys 22(3):445–459

    Article  Google Scholar 

  4. Yang YF, Gono Y, Motomura S, Enomoto S, Yano Y (2001) A Compton camera for multitracer imaging. IEEE Trans Nucl Sci 48(3):656–661

    Article  Google Scholar 

  5. Seo H, Lee SH, Jeong JH, Kim CH, Lee JH, Lee CS, Lee JS (2009) Feasibility study on hybrid medical imaging device based on Compton imaging and magnetic resonance imaging. Appl Radiat Isot 67:1412–1415

    Article  PubMed  CAS  Google Scholar 

  6. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P et al (2003) GEANT4—a simulation toolkit. Nucl Instrum Methods A 506:250–303

    Article  CAS  Google Scholar 

  7. Allison J, Amako K, Apostolakis J, Araujo H, Dubois P, Asai Me (2006) Geant4 developments and applications. IEEE Trans Nucl Sci 53:270–278

    Article  Google Scholar 

  8. Dyer, SA (eds) (2001) Survey of instrumentation and measurement. Wiley, New York

    Google Scholar 

  9. Du YF, He Z, Knoll GF, Wehe DK, Li W (2001) Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instrum Methods A 457:203–211

    Article  CAS  Google Scholar 

  10. Wagenaar DJ, Parnham K, Sundal B, Maehlum G, Chowdhury S, Meier D, Vandehei T, Szawlowski M, Patt BE (2007) Advantages of semiconductor CZT for medical imaging. In: 2007 Proc SPIE. SPIE, San Diego, CA, USA, vol 6707, pp 67070I–67070I-10

  11. LeBlanc JW, Clinthorne NH, Hua CH, Nygard E, Rogers W, Wehe D, Weilhammer P, Wilderman S (1998) C-SPRINT: a prototype Compton camera system for low energy gamma ray imaging. IEEE Trans Nucl Sci 45:943–949

    Article  CAS  Google Scholar 

  12. Studen A, Cindro V, Clinthorne NH, Czermak A, Dulinski W, Fuster J, Han L, Jalocha P, Kowal M, Kragh T, Lacasta C, Llosá G, Meier D, Mikuz M, Nygard E, Park SJ, Roe S, Rogers WL, Sowicki B, Weilhammer P, Wilderman SJ, Yosshioka K, Zhang L (2003) Development of silicon pad detectors and readout electronics for a Compton camera. Nucl Instrum Methods A 501:273–279

    Article  CAS  Google Scholar 

  13. Meier D, Czermak A, Jalocha P, Sowicki B, Kowal M, Dulinski W, Maehlum G, Nygard E, Yoshioka K, Fuster J, Lacasta C, Mikuz M, Roe S, Weilhammer P, Hua C, Park S, Wildermann S, Zhang L, Clinthorne N, Rogers W (2002) Silicon detector for a Compton camera in nuclear medical imaging. IEEE Trans Nucl Sci 49:812–816

    Article  CAS  Google Scholar 

  14. Chen H, Awadalla SA, Iniewski K, Lu PH, Harris F, Mackenzie J, Hasanen T, Chen W, Redden R, Bindley G (2008) Characterization of large cadmium zinc telluride crystals grown by travelling heater method. J Appl Phys 103(014903)

  15. Awadalla SA, Chen H, Mackenzie J, Lu P, Iniewski K, Marthandam P, Redden R, Bindley G, He Z, Zhang F (2009) Thickness scalability of large volume cadmium zinc telluride high resolution radiation detectors. J Appl Phys 105(114910)

  16. Lo Meo S, Baldazzi G, Bennati P, Bollini D, Cencelli VO, Cinti MN, Lanconelli N, Moschini G, Navaria FL, Pani R, Pellegrini R, Perrotta A, Vittorini F (2008) Geant4 simulation for modelling the optics of LaBr scintillation. In: 2008 IEEE nuclear science symposium conference record. IEEE, M10-242, pp 4964–4968

  17. Moszyński M, Świderski L, Szczȩśniak T, Nassalski A, Syntfeld-Kazuch A, Czarnacki W, Pausch G, J S, P L, Lherbert F, Kniest F (2007) Study of LaBr3:Ce crystals coupled to photomultipliers and avalanche photodiodes. In: 2007 IEEE nuclear science symposium conference record. IEEE, New York, NY, N24-172, pp 1351–1357

  18. Pani R, Vittorini F, Pellegrini R, Bennati P, Cinti M, Mattioli M, Scafé R, Lo Meo S, Navarria F, Moschini G, Boccaccio P, Cencelli VO, De Notaristefani F (2008) High spatial and energy resolution gamma imaging based on LaBr3(Ce) continuous crystals. In: Nuclear science symposium conference record, 2008. NSS ’08. IEEE. IEEE, Dresden, Germany, pp 1763–1771

  19. Pani R, Pellegrini R, Cinti MN, Bennati P, Betti M, Casali V, Schillaci O, Mattioli M, Orsolini Cencelli V, Navarria F, Bollini D, Moschini G, Garibaldi F, Cusanno F, Iurlaro G, Montani L, R S, de Notaristefani F (2006) Recent advances and future perspectives of gamma imagers for scintimammography. Nucl Instrum Methods A 569:296–300

    Article  CAS  Google Scholar 

  20. Lo Meo S, Bennati P, Cinti MN, Lanconelli N, Navaria FL, Pani R, Pellegrini R, Perrotta A, Vittorini F (2009) A GEANT4 simulation code for simulating optical photons in SPECT scintillation detectors. In: 4th International conference on imaging technologies in biomedical sciences, from medical images to clinical information—bridging the gap. IOP Publishing Ltd and SISSA, Milos Island , Greece, pp 1–5

  21. Russo P, Mettivier G, Pani R, Pellegrini R, Cinti MN, Bennati P (2009) Imaging performance comparison between a LaBr3:Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera. Med Phys 36:1298–1317

    Article  PubMed  CAS  Google Scholar 

  22. Tatischeff V, Kiener J, Sedes G, Hamadache C, Karkour N, Linget D, Astorino AT, Bardalez Gagliuffi DC, Blin S, Barrillon P (2010) Development of an Anger camera in lanthanum bromide for gamma-ray space astronomy in the MeV range. In: 8th INTEGRAL Workshop ‘The Restless Gamma-ray Universe, Dublin’, Ireland (2010). Dublin Castle, Dublin, Ireland

  23. Menge P (2006) Performance of large BrilLanCe 380\(^{\circledR}\) (lanthanum bromide) scintillators. http://www.detectors.saint-gobain.com/Brillance380.aspx. Presented at SORMA XI, Ann Arbor Michigan, USA

  24. Uche CZ, Round WH, Cree MJ (2011) Effects of energy threshold and dead time on Compton camera performance. Nucl Instrum Methods A 641:114–120

    Article  CAS  Google Scholar 

  25. Uche CZ, Round WH, Cree MJ (2012) Evaluation of two Compton camera models for scintimammography. Nucl Instrum Methods A 662:55–60

    Article  CAS  Google Scholar 

  26. Mostafa M, El-Sadek AA, El-Said H, El-Amir MA (2009) 99Mo/99mTc-113Sn/113mIn dual radioisotope generator based on 6-Tungstocerate(IV) column matrix. J Nucl Radiochem Sci 10(1):1–12

    CAS  Google Scholar 

  27. Mou T, Yang W, Peng C, Zhang X, Ma Y (2009) F-18 -labeled 2-methoxyphenylpiperazine derivative as a potential brain positron emission tomography imaging agent. Appl Radiat Isot 67:2013–2018

    Article  PubMed  CAS  Google Scholar 

  28. LeBlanc JW, Clinthorne NH, Hua C, Rogers WL, Wehe DK, Wilderman SJ (1999) A Compton camera for nuclear medicine applications using 113mIn. Nucl Instrum Methods A 422:735–739

    Article  CAS  Google Scholar 

  29. Uche CZ, Round WH, Cree MJ (2011) GEANT4 simulation of the effects of Doppler energy broadening in Compton imaging. Australas Phys Eng Sci Med 34:409–414

    Article  PubMed  CAS  Google Scholar 

  30. Del Guerra A, Belcari N, Bencivelli W, Motta A, Righi S, Vaiano A, Di Domenico G, Moretti E, Sabba N, Zavattini G, Campanini R, Lanconelli N, Riccardi A, Cinti M, Pani R, Pellegrini R (2002) Monte Carlo study and experimental measurements of breast tumor detectability with the YAP-PEM prototype. In: 2002 IEEE nuclear science symposium conference record. IEEE, Pisa, Italy, vol 3, pp 1887–1891

  31. Pani R, Pellegrini R, Betti M, De Vincentis G, Cinti MN, Bennati P, Vittorini F, Casali V, Mattioli M, Orsolini Cencelli V, Navarria F, Bollini D, Moschini G, Iurlaro G, Montani L, De Notaristefani F (2007) Clinical evaluation of pixellated NaI:Tl and continuous LaBr3Ce, compact scintillation cameras for breast tumours imaging. Nucl Instrum Methods A 571:475–479

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Faculty of Science and Engineering of the University of Waikato under account code: 01-A6-SF50-RG-PS13-F857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Round.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uche, C.Z., Round, W.H. & Cree, M.J. Evaluation of detector material and radiation source position on Compton camera’s ability for multitracer imaging. Australas Phys Eng Sci Med 35, 357–364 (2012). https://doi.org/10.1007/s13246-012-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0150-4

Keywords

Navigation